

Prime Consulting Engineers Pty. Ltd.

Design Report:

3.5m Square Cantilever Umbrella

For

Ref: R-22-174-2

Date: 20/01/2022

Amendment: -

Prepared by: KZ

Checked by: BG

Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

Web: www.primeengineers.com.au Phone: (02) 8964 1818

CONTENTS

1	Intro	duction and Scope:	4
	1.1	Project Description	4
	1.2	References	4
	1.3	Notation	4
2	Desi	gn Overview	5
	2.1	Geometry Data	5
	2.2	Assumptions & Limitations	6
	2.3	Exclusions	6
	2.4	Design Parameters and Inputs	6
	2.4.2	Load Cases	6
	2.4.2	Load Combinations	6
3	Spec	ifications	7
	3.1	Material Properties	7
	3.2	Buckling Constants	7
	3.3	Member Sizes & Section Properties	8
	3.3.2	Rectangular Section	8
	3.3.2		8
4	Desi	gn Loads	9
5	Win	d Analysis	9
	5.1	Ultimate	9
	5.2	Load Diagrams	12
	5.2.2	· · · · · · · · · · · · · · · · · · ·	12
		Wind Load Ultimate (W _{U,max})	12
6	Anal		13
	6.1	3D model	13
	6.2	Results	14
	6.2.1	` ' '	14
	6.2.2	5	15
		Maximum Shear	16
	6.2.4		17
_	6.2.5		17
7		ninium Design	18
8		norage Design	18
	8.1	Bolted Structure	18
_	8.2	Weighted structure	19
9		mary and Recommendations	20
1(endix A – Detail Drawings	21
1:		endix B – Section capacity	26
	11.1	Checking Members Based on AS1664.1 ALUMINIUM LSD	26
	11.1	.1 Post	26

2 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.auAddress: 21/1-7 JWeb: www.primeengineers.com.auPhone: (02) 8964

Prime Consulting Engineers Pty. Ltd.

	11.1.2	Cantilever Beam	30
	11.1.3	Brace (typ.1)	34
	11.1.4	Brace (typ.2)	39
	11.1.5	Middle Beam	43
	11.1.6	Corner Beam	47
	11.1.7	Centre Pole	52
	11.1.8	Summary Forces	56
12	Appendi	ix 'C' – Anchorage Design	57

3 | Page **Email:** info@primeengineers.com.au **Web:** www.primeengineers.com.au **Address:** 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

1 Introduction and Scope:

The report and certification are the sole property of Prime Consulting Engineers Pty. Ltd.

Prime Consulting Engineers have been engaged by Extreme Marquees Pty. Ltd. to carry out a structural analysis of three different sizes of Aluminium Cantilever Umbrellas for wind region A (non-cyclonic). It should be noted that the outcome of our analysis is limited to the selected items as outlined in this report.

This report shall be read in conjunction with the documents listed in the references (Section 1.2)

1.1 Project Description

The report examines the effect of 3s gust wind of **(refer to summary)** positioned for the worst effect on 3.5m square cantilever umbrella structure. The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed and other actions and AS1170.2:2011 Wind actions are used. The design check is in accordance with AS1664.1 Aluminum Structures.

1.2 References

- The documents referred to in this report are as follows:
 - Report of results produced through SAP2000 V23 software & excel spreadsheets.
 - Detail drawing provided by manufacturer (YEEZE). Refer to appendix 'A'.
- The basic standards used in this report are as follows:
 - AS 1170.0:2002 Structural Design Actions (Part 0: General principles)
 - AS 1170.1:2002 Structural Design Actions (Part 1: Permanent, imposed, and other actions)
 - AS 1170.2:2011 Structural Design Actions (Part 2: Wind Actions)
 - AS1664.1 Aluminium Structures.
- Section Properties of Aluminium Section provided by the client. (Refer Appendix 'A'.
- The program(s) used for this analysis are as follows:
 - o SAP2000 V23
 - Microsoft Excel

1.3 Notation

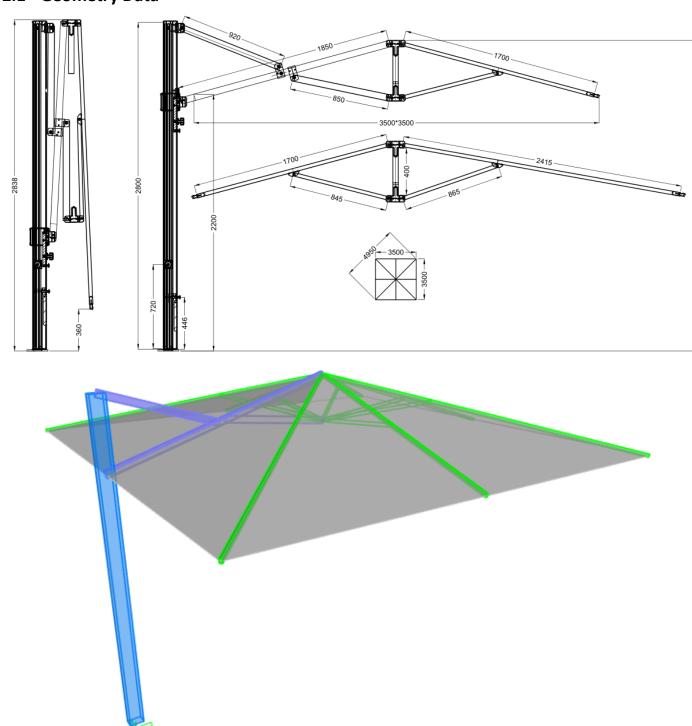
AS/NZS Australian Standard/New Zealand Standard

FEM/FEA Finite Element Method/Finite Element Analysis

SLS Serviceability Limit State

ULS Ultimate Limit State

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818


Web: www.primeengineers.com.au

Email: info@primeengineers.com.au

2 Design Overview

2.1 Geometry Data

Isometric view of structures

5 | Page ille NSW 2111

Email: info@primeengineers.com.au **Web:** www.primeengineers.com.au

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

2.2 Assumptions & Limitations

- The erected structure is for temporary use only.
- For forecast winds in excess of (refer to summary) the umbrella structure should be completely folded
- The structure may only be used in regions with wind classifications no greater than the limits specified in cl. 5 of this report.
- Parameters used for wind calculations:
 - TC 2
 - Wind Region A
- Topographical factors such as erecting the structure on the crest of a hill or on the top of an escarpment may result in a higher wind speed classification. Thus, special considerations should be taken to the topographical location of the installation site.
- Shall the site conditions/wind parameters exceed prescribed design wind actions (refer to cl.8), Prime Consulting Engineers Pty. Ltd. should be informed to determine appropriate wind classifications and amend computations accordingly.

2.3 Exclusions

- Design of fabric
- Wind actions due to tropical or severe tropical cyclonic areas.
- Super imposed loads such as live loads or snow and ice loads.

2.4 Design Parameters and Inputs

2.4.1 Load Cases

G Permanent actions (Dead load)
 Wu Ultimate wind action (ULS)
 Ws Serviceability wind action (SLS)

2.4.2 Load Combinations

Strength (ULS):

1. 1.35G Permanent action only
 3. 0.9G+W_u Permanent and wind actions
 4. 1.2G+W_u Permanent and wind actions

Serviceability (SLS):

2. G+W_s Wind service actions

Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

6 | Page

Web: www.primeengineers.com.au Phone: (02) 8964 1818

3 Specifications

3.1 Material Properties

Material Properties												
COCO TE	Ftu	Fty	Fcy	Fsu	Fsy	F _{bu}	F _{by}	Е	kt	k c		
6063-T5	152	110	110	90	62	317	179	70000	1	1.12		

3.2 Buckling Constants

	TABLE 3.3(D) BUCKLING CONSTANTS												
Type of member and stress	Interce	ept, MPa		ope, IPa	Intersection								
Compression in columns and beam flanges	B _c	119.26	D _c	0.49	Cc	99.33							
Compression in flat plates	Bp	134.29	Dp	0.59	Cp	93.61							
Compression in round tubes under axial end load	Bt	132.00	Dt	3.62	Ct	*							
Compressive bending stress in rectangular bars	B _{br}	194.52	D _{br}	1.26	C _{br}	103.26							
Compressive bending stress in round tubes	B _{tb}	183.09	D _{tb}	9.34	Ctb	79.80							
Shear stress in flat plates	Bs	75.86	Ds	0.25	Cs	124.54							
Ultimate strength of flat plates in compression	k ₁	0.35	k ₂	2.27									
Ultimate strength of flat plates in bending	K ₁	0.5	k ₂	2.04									

 $^{^*}$ C_t shall be determined using a plot of curves of limit state stress based on elastic and inelastic buckling or by trial and error solution

7 | Page SW 2111

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

3.3 Member Sizes & Section Properties

3.3.1 Rectangular Section

MEMBER(S)	Section	b	d	t	у _с	Ag	Z _x	Z _y	S _x	Sy	l _x	l _y	J	r _x	r _y
		mm	mm	mm	mm	mm²	mm³	mm³	mm³	mm³	mm⁴	mm⁴	mm⁴	mm	mm
Post	120x85x3	85	120	3	60.0	1194.0	41441.7	34291.3	49329.0	38881.5	2486502.0	1457379.5	2775221.2	45.6	34.9
Cantilever Beam	60x35x3.5	35	60	3.5	30.0	616.0	9420.7	6709.7	11837.0	7987.0	282620.3	117420.3	251961.0	21.4	13.8
Brace 1	60x35x3.5	35	60	3.5	30.0	616.0	9420.7	6709.7	11837.0	7987.0	282620.3	117420.3	251961.0	21.4	13.8
Brace 2	30x20x1.5	20	30	1.5	15.0	141.0	1141.1	894.6	1401.8	1049.3	17115.8	8945.8	17744.2	11.0	8.0
Middle Beam	30x20x1.5	20	30	1.5	15.0	141.0	1141.1	894.6	1401.8	1049.3	17115.8	8945.8	17744.2	11.0	8.0
Corner Beam	30x20x1.5	20	30	1.5	15.0	141.0	1141.1	894.6	1401.8	1049.3	17115.8	8945.8	17744.2	11.0	8.0
Brace	100x50x5	50	100	5	50.0	1400.0	34733.3	22466.7	44000.0	26500.0	1736666.7	561666.7	1305401.8	35.2	20.0

3.3.2 Circular Sections

MEMBER(S)	Section	đ	t	Уc	\mathbf{A}_{g}	Z _x	Z _y	S _x	Sy	l _x	l _y	J	r _x	r _y
		mm	mm	mm	mm²	mm³	mm³	mm³	mm³	mm⁴	mm⁴	mm⁴	mm	mm
Centre Pole	48x1.8	48	1.8	24.0	261.3	2908.7	2908.7	3843.9	3843.9	69809.9	69809.9	139619.8	16.3	16.3

Address: 21/1-7 Jordan St, Gladesville NSW 2111 Email: info@primeengineers.com.au Web: www.primeengineers.com.au

Phone: (02) 8964 1818

8 | Page

4 Design Loads

Self weight	G	self weight
3s 55km/hr gust	Wu	0.116 C _{fig} (kPa)
3s 20km/hr gust	Ws	0.015 C _{fig} (kPa)

5 Wind Analysis

PRIME CONSULTING ENGINEERS PTY. LTD

Email: info@primeengineers.com.au

5.1 Ultimate

Project: 4m square Cantilever Umbrella

Job no. 22-174-2 Designer: KZ

Name	Symbol	Value	Unit	Notes	Ref.
		Inp	ut		
Importance level		2			Table 3.1 - Table 3.2 (AS1170.0)
Annual probability of exceedance		Temporary			Table 3.3
Regional gust wind speed		55.008	Km/hr		
Regional gust wind speed	V_{R}	15.28	m/s		
Wind Direction Multipliers	M_{d}	1			Table 3.2 (AS1170.2)
Terrain Category	TC	2			, ,
Terrain Category Multiplier	$M_{Z,Cat}$	0.91			
Shield Multiplier	Ms	1			4.3 (AS1170.2)
Topographic Multiplier	M_{t}	1			4.4 (AS1170.2)
Site Wind Speed	$V_{Site,\beta}$	13.90	m/s	$V_{Site,\beta}=V_R*M_d*M_{z,cat}*M_S,M_t$	
Pitch	α	15	Deg		
Pitch	α	-	rad		

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Web: www.primeengineers.com.au Phone: (02) 8964 1818

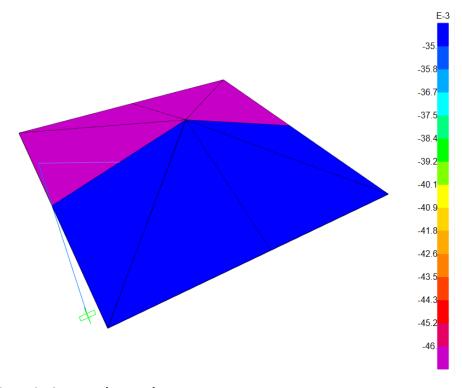
Width	В	4	m								
Length	D	4	m								
Height	Z	2.5	m								
Porosity Ratio	δ	1		ratio of solid area to total area							
				arou							
		Wind P	Pressure								
hoair	ρ	1.2	Kg/m ³								
dynamic response factor	C_dyn	1									
Wind Pressure	ho*Cfig	0.116	Kg/m ²	ρ =0.5 ρ air*(V des, β) ² * C fig* C dyn	2.4 (AS1170.2)						
		WIND DIREC	CTION 1 (6	 Э=0)							
External Pressure											
1. Free Roof				α =0 °							
Area Reduction Factor	Ka	1			D7						
local pressure factor	Κı	1									
porous cladding reduction factor	K_p	1.00									
External Pressure Coefficient MIN	$C_{P,w}$	-0.3									
External Pressure Coefficient MAX	$C_{P,w}$	0.4									
External Pressure Coefficient MIN	$C_{P,I}$	-0.4									
External Pressure Coefficient	$C_{P,I}$	0									
MAX aerodynamic shape factor	$C_{fig,w}$	-0.30									
MIN aerodynamic shape factor	C _{fig,w}	0.40									
MAX aerodynamic shape factor	C _{fig,l}	-0.40									
MIN aerodynamic shape factor	-										
MAX	$C_{\mathrm{fig,I}}$	0.00									
Pressure Windward MIN	Р	-0.03	kPa								
Pressure Windward MAX	Р	0.05	kPa								
Pressure Leeward MIN	Р	-0.05	kPa								
Pressure Leeward MAX	Р	0.00	kPa								
		WIND DIREC									
		External	Pressure								
4. Free Roof				α =180°	D7						

10 | Page

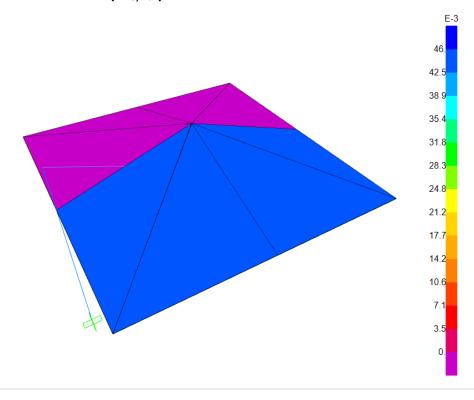
Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.auAddress: 21/1-7 JordaWeb: www.primeengineers.com.auPhone: (02) 8964 18

Area Reduction Factor	Ka	1	
local pressure factor	K_{l}	1	
porous cladding reduction factor	K_p	1.00	
External Pressure Coefficient MIN	$C_{P,w}$	-0.3	
External Pressure Coefficient MAX	$C_{P,w}$	0.4	
External Pressure Coefficient MIN	$C_{P,I}$	-0.4	
External Pressure Coefficient MAX	$C_{P,I}$	0	
aerodynamic shape factor MIN	$C_{\text{fig},w}$	-0.30	
aerodynamic shape factor MAX	$C_{\text{fig},w}$	0.40	
aerodynamic shape factor MIN	$C_{\text{fig,I}}$	-0.40	
aerodynamic shape factor MAX	$C_{\text{fig,I}}$	0.00	
Pressure MIN (Windward	Р	0.00	l-D-
Side)	۲	-0.03	kPa
Pressure MAX (Windward Side)	Р	0.05	kPa
Pressure MIN (Leeward Side)	Р	-0.05	kPa
Pressure MAX (Leeward Side)	Р	0.00	kPa


WIND EXTERNAL PRESSURE	Dire	ction1	Direction2		
WIND EXTERNAL PRESSURE	Min (Kpa)	Max (Kpa)	Min (Kpa)	Max (Kpa)	
Windward	-0.035	0.046	-0.035	0.046	
Leeward	-0.046	0.000	-0.046	0.000	

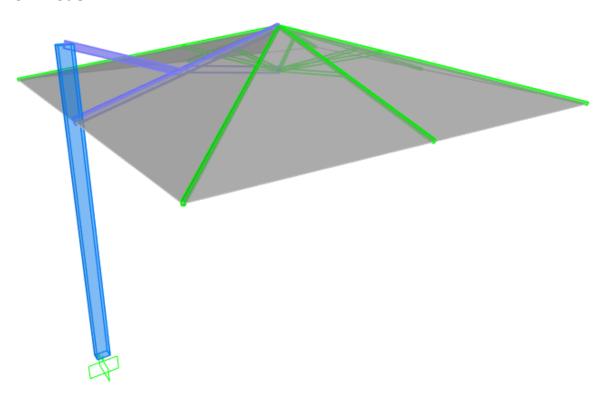
Email: <u>info@primeengineers.com.au</u> **Meb:** <u>www.primeengineers.com.au</u> **Address:** 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818



5.2 Load Diagrams

5.2.1 Wind Load Ultimate (W_{U,min})

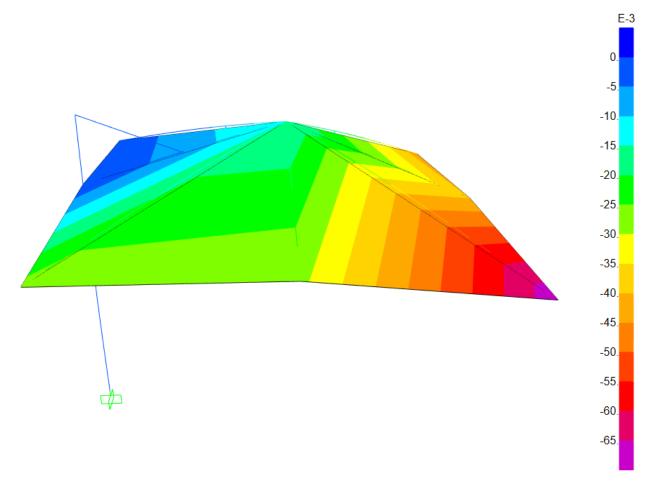
5.2.2 Wind Load Ultimate (W_{U,max})


12 | Page Address: 21/1-7 Jordan St, Gladesville NSW 2111

Email: <u>info@primeengineers.com.au</u> **Web:** <u>www.primeengineers.com.au</u> **Address:** 21/1-7 Jordan 9 **Phone:** (02) 8964 1818

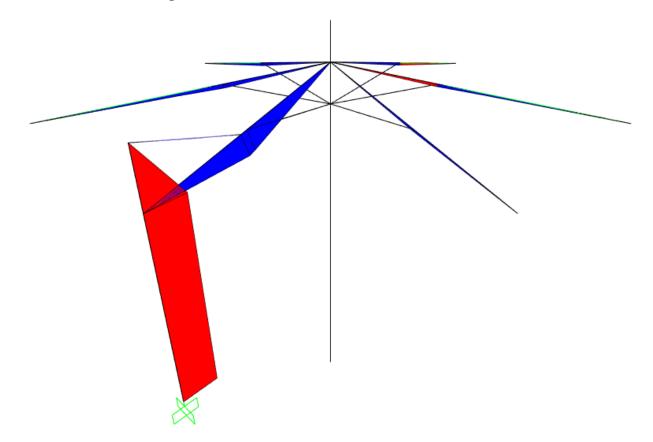
6 Analysis

6.1 3D model

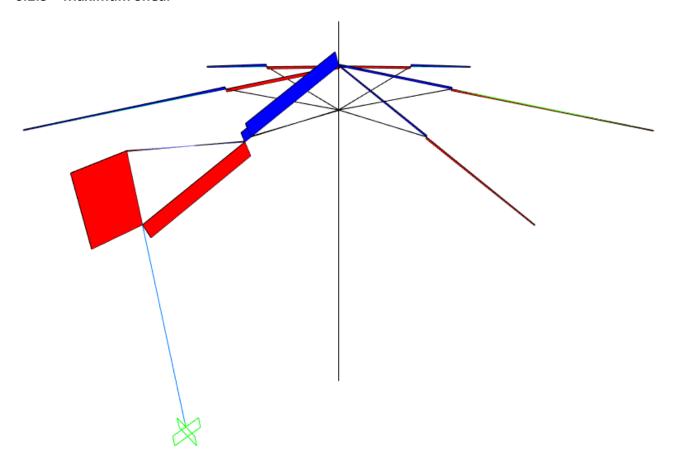


rs.com.au Phone: (02) 8964 187

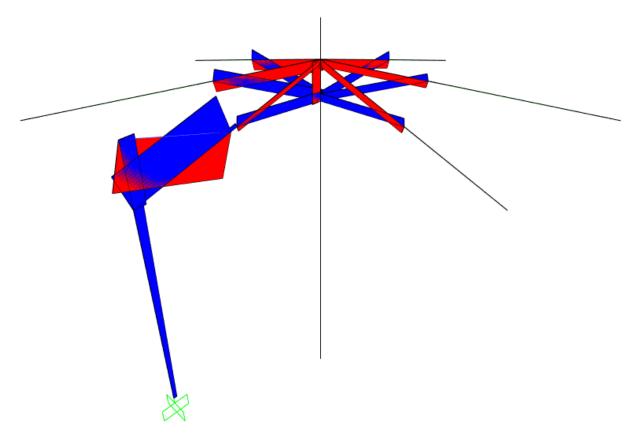
6.2 Results


6.2.1 Maximum deflection (serviceability)

Phone: (02) 8964 1818



6.2.2 Maximum Bending Moment


6.2.3 Maximum Shear

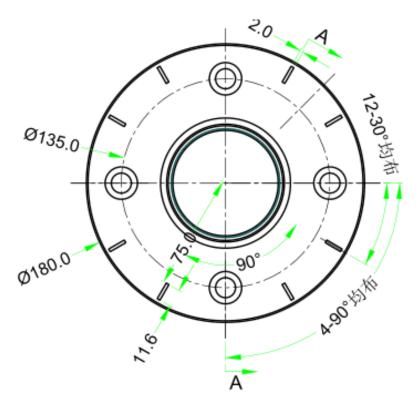
Email: info@primeengineers.com.auAddress: 21/1-7 JordWeb: www.primeengineers.com.auPhone: (02) 8964 18

6.2.4 Maximum Axial Force

6.2.5 Maximum Reactions

	TABLE: Joint Reactions											
F1 F2 F3 M1 M2 M3												
OutputCase	KN	KN	KN	KN-m	KN-m	KN-m						
1.2G+Wmax	1.964E-12	-0.048	0.608	-0.1317	-0.8242	-0.0845						
0.9G+Wmin	-1.55E-12	-0.012	-0.251	-0.0315	0.6199	-0.0202						

Web: www.primeengineers.com.au


7 Aluminium Design

All members pass for the defined design wind actions. Refer to Appendix 'B' for section capacities and factor of safeties.

8 Anchorage Design

8.1 Bolted Structure

Refer to Appendix 'C' for details.

Base Plate Radius: 90mm Edge distance: 25mm

Email: info@primeengineers.com.au

Assumed Concrete Slab Thickness: 180mm Maximum Tensile Force on bolts: 5.33kN Design of supporting concrete slab is by others.

Use 4/HLA-Z1 M10 bolt by All Fasteners

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Web: www.primeengineers.com.au Phone: (02) 8964 1818

8.2 Weighted structure

Base Plate Holder: 850mm x 850mm x 70mm

Design forces:

 $M^* = 0.62 \text{ kN.m}$ P = 0.25 kN

 $0.73 \times 0.85 + 0.251 \times 0.85/2 = W/2 \times 0.85 \rightarrow W = 1.71kN$

180kg ballast is required to be distributed evenly on the 850 x 850 x 70 base plate holder

Email: <u>info@primeengineers.com.au</u> **Address:** 21/1-7 Jordan St, Glades **Web:** <u>www.primeengineers.com.au</u> **Phone:** (02) 8964 1818

19 | Page Address: 21/1-7 Jordan St, Gladesville NSW 2111

PCE

9 Summary and Recommendations

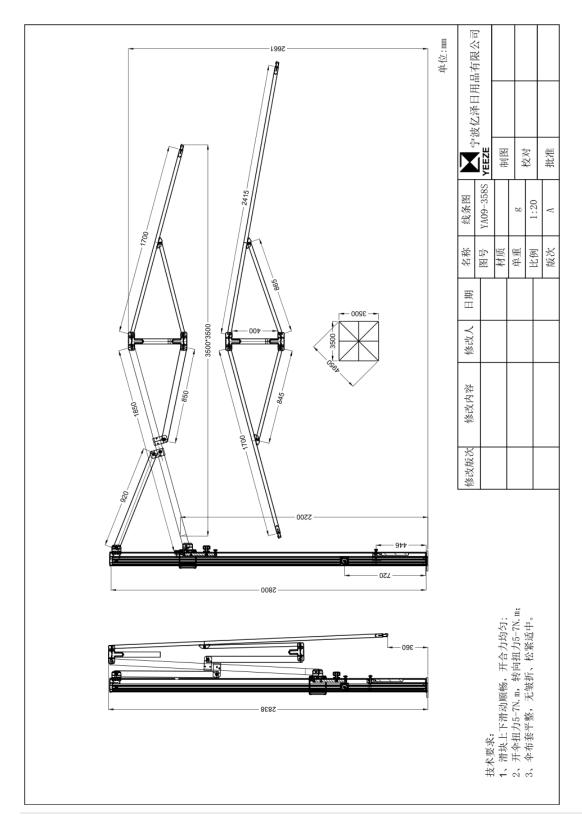
 The 3.5m Square Cantilever Umbrella Structure as specified is capable of withstanding 3s gust wind speed up to <u>55km/hr</u>.

The umbrella structure is required to be folded for forecast winds in excess of <u>20km/hr</u> to avoid any potential permanent deformation/buckling due to excessive deflection as a result of higher wind speeds.

 The anchorage system described in <u>Cl. 8</u> (180kg ballast or 4/HLA-Z1 M10 bolt) is required to resist against uplift & overturning forces due to design wind loads.

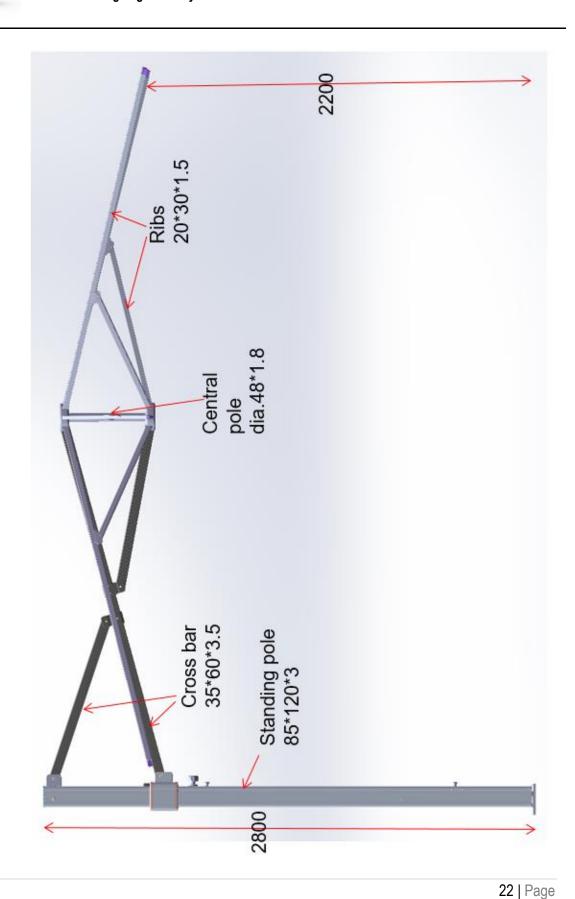
Yours faithfully,

Prime Consulting Engineers Pty. Ltd.

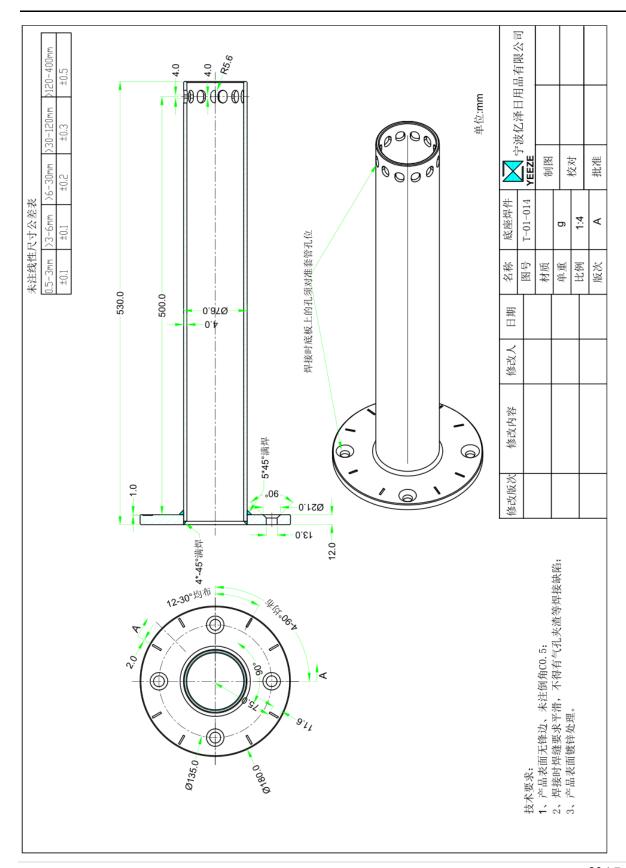

Kevin Zia, BEng, Meng, MIEAust, CPENG NER

Email: info@primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

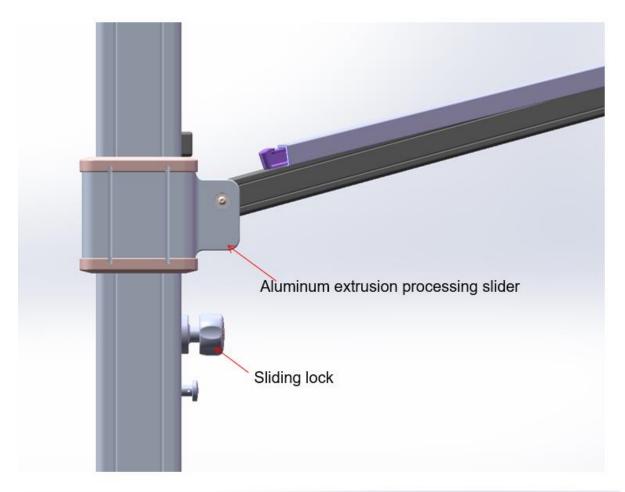
Web: www.primeengineers.com.au Phone: (02) 8964 1818

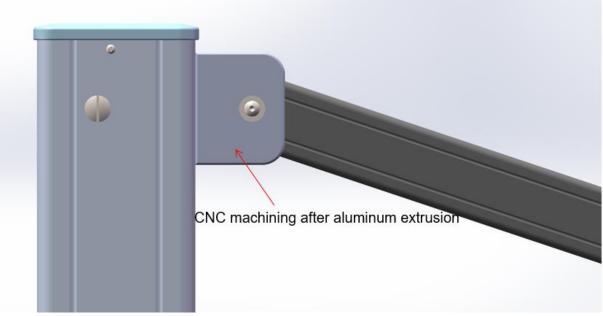


10 Appendix A – Detail Drawings

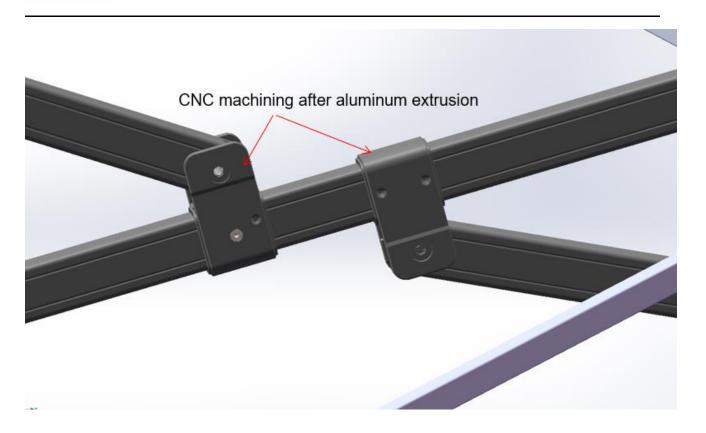

21 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818




Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818



Email: info@primeengineers.com.au Web: www.primeengineers.com.au Phone: (02) 8964 1818

25 | Page **Address:** 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

11 Appendix B – Section capacity

11.1 Checking Members Based on AS1664.1 ALUMINIUM LSD

11.1.1 Post

Job no. 21-174-2 **Date**: 17/01/2022

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
120x85x3	Post					
Alloy and temper	6063-T5					AS1664.1
	Ftu	=	152	MPa	Ultimate	T3.3(A)
Tension	F _{ty}	=	110	MPa	Yield	10.5(71)
Compression	F _{cy}	_	110	MPa	Tiold	
Compression	F _{su}	_	90	MPa	Ultimate	
Shear	F _{sy}	=	62	MPa	Yield	
	F _{bu}	=	317	MPa	Ultimate	
Bearing	F _{by}	=	179	мРа	Yield	
	Гъу	_	179	IVIFA	rieid	
Modulus of elasticity	E	=	70000	MPa	Compressive	
•						
	\mathbf{k}_{t}	=	1			T3.4(B)
	k c	=	1			10.4(D)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.524	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	0.8242	kNm		
Out of plane moment	M_{y}	=	0.2379	kNm		
·						
DESIGN STRESSES						
Gross cross section area	A_g	=	1194	mm ²		
In-plane elastic section modulus	Z_{x}	=	41441.7	$\rm mm^3$		
Out-of-plane elastic section	7		24204 202	mm³		
mod.	Z_y	=	34291.282	mm ³		
Stress from axial force	f _a	=	P/A _g			
		=	0.44	MPa	compression	

26 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

		=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x			
		=	19.89	MPa	compression	
Stress from out-of-plane	$\mathbf{f}_{\mathbf{b}\mathbf{y}}$	=	M_y/Z_y			
bending - ·		=	6.94	MPa	compression	
Tension	_					
3.4.3 Tension in rectangular tube		_	104.50	MPa		
	φFL	= OR	104.50	IVIFA		
	φFL	=	129.20	MPa		
	ΨΓL	-	125.20	IVIFA		
COMPRESSION						
3.4.8 Compression in columns, a	xial, gross	sectio	n			
1. General						3.4.8.1
Unsupported length of member	L	=	2800	mm		
Effective length factor Radius of gyration about	k	=	1.00			
buckling axis (Y)	\mathbf{r}_{y}	=	34.94	mm		
Radius of gyration about	r _x	=	45.63	mm		
buckling axis (X)						
Slenderness ratio Slenderness ratio	kLb/ry kL/rx	=	62.97 61.36			
Cichaemess ratio	KL/1X	_	01.50			
Slenderness parameter	λ	=	0.795			
	D_c^*	=	39.0			
	S ₁ *	=	0.24			
	S_2^*	=	1.25			
	фсс	=	0.833			
Factored limit state stress	φF∟	=	73.54	MPa		
2. Sections not subject to torsiona	al or torsio	nal-fle	vural hucklini	~		3.4.8.2
Largest slenderness ratio for				ð		0.4.0.2
flexural buckling	kL/r	=	62.97			
3.4.10 Uniform compression in co	omponents	of col	umns, gross	section -		
flat plates 1. Uniform compression in compo	nents of a	olumn	s arnss sent	ion - flat		
plates with both edges supported		Julill	o, gross sect	ivii - iial		3.4.10.1
,,,	\mathbf{k}_1	=	0.35			T3.3(D)
Max. distance between toes of						
fillets of supporting elements for plate	b'	=	79			
	t	=	3	mm		
Slenderness	b/t	=	26.333333			

27 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.auAddress: 21/1-7 JordaWeb: www.primeengineers.com.auPhone: (02) 8964 187

							_
Limit 1	S ₁	=	12.06				
Limit 2	S ₂	=	49.94				
Factored limit state stress	фГ∟	=	93.08	MPa			
Most adverse compressive limit state stress	Fa	=	73.54	MPa			
Most adverse tensile limit state stress	Fa	=	104.50	MPa			
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.01		PASS		
BENDING - IN-PLANE							
3.4.15 Compression in beams, extubes, box sections	ktreme fibro	e, gros	ss section rec	tangular			
Unbraced length for bending	L _b	=	2200	mm			
Second moment of area (weak axis)	I_y	=	1.46E+06	mm ⁴			
Torsion modulus	J	=	2.78E+06	mm^3			
Elastic section modulus	Z	=	41441.7	mm^3			
Slenderness	S	=	90.67				
Limit 1	S_1	=	21.80				
Limit 2	S_2	=	3854.05				
Factored limit state stress	фГ∟	=	95.00	MPa		3.4.15(2)	
3.4.17 Compression in componer compression), gross section - flat							
nat	k ₁	=	0.5			T3.3(D)	
	k ₂	=	2.04			T3.3(D)	
Max. distance between toes of fillets of supporting elements	b'	=	79	mm		10.0(D)	
for plate							
	t	=	3	mm			
Slenderness	b/t	=	26.333333				
Limit 1	S ₁	=	12.06				
Limit 2	S ₂	=	71.35				
Factored limit state stress	фГ∟	=	93.08	MPa			
Most adverse in-plane bending limit state stress	F _{bx}	=	93.08	MPa			
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.21		PASS		

28 | Page **Email:** info@primeengineers.com.au **Web:** www.primeengineers.com.au Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

					Î	1
BENDING - OUT-OF-PLANE	ara tha aar	ma far	out of plane l	ondina		
NOTE: Limit state stresses, ϕF_L (doubly symmetric section)	are tne sar	ne tor	out-ot-plane i	penaing		
(dodbiy symmetric section)						
Factored limit state stress	φFL	=	93.08	MPa		
r dotorod imin otato otrogo	Ψ. Γ		00.00	4		
Most adverse out-of-plane						
bending limit state stress	F_{by}	=	93.08	MPa		
Most adverse out-of-plane			0.07		BASS	
bending capacity factor	f_{by}/F_{by}	=	0.07		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression an	d bending					4.1.1(2)
	F_a	=	73.54	MPa		3.4.8
	Fao	=	93.08	MPa		3.4.10
	F_{bx}	=	93.08	MPa		3.4.17
	F_by	=	93.08	MPa		3.4.17
	i by	_	30.00	IVII G		0. 1. 17
	f _a /F _a	=	0.006			
						4.1.1
Check:	$f_a/F_a + f_{bx}$	/F _{bx} + 1	$f_{\text{by}}/F_{\text{by}} \leq 1.0$			(3)
i.e.	0.29	≤	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major						4.1.1(2)
Axis)						
Clear web height	h	_	114	mm		
Clear web neight	t	=	3	mm		
Slenderness	ر h/t	_	38	111111		
Limit 1	S ₁	_	33.38			
Limit 2	S_2	=	59.31			
Factored limit state atmosp			F7 60	MD-		
Factored limit state stress	φF∟	=	57.60	MPa		
Stress From Shear force	f_{sx}	=	V/A _w			
2.4.25 Chaor in waha (Minar			0.00	MPa		
3.4.25 Shear in webs (Minor Axis)						
TAIO)						
Clear web height	b	=	79	mm		
	t	=	3	mm		
Slenderness	b/t	=	26.333333			
			-			
Factored limit state stress	φF∟	=	58.90	MPa		
Stress From Shear force	-	=	V/A _w			
	f _{sy}	=				

29 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Web: www.primeengineers.com.au Phone: (02) 8964 18

Email: info@primeengineers.com.au

			0.05	MPa		
Most adverseshear capacity factor (Major Axis)	f_{sx}/F_{sx}	=	0.00	МРа		
Most adverseshear capacity factor (Minor Axis)	f_{sy}/F_{sy}	=	0.00	Мра	PASS	
COMBINED ACTIONS						
	n and han	dina				
4.4 Combined Shear, Compresion	n and bend	airig				
Check:	$f_a/F_a + f_b/F_a$	F _b + (f _s /	$(F_s)^2 \le 1.0$			
i.e.	0.22	≤	1.0		PASS	

11.1.2 Cantilever Beam

Job no. 21-174-2 **Date**: 17/01/2022

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
60x35x3.5	Cantilever Beam					
Alloy and temper	6063-T5					AS1664.1
	F _{tu}	=	152	MPa	Ultimate	T3.3(A)
Tension	F _{ty}	=	110	MPa	Yield	
Compression	F _{cy}	=	110	MPa		
Ohana	Fsu	=	90	MPa	Ultimate	
Shear	F_{sy}	=	62	MPa	Yield	
Pooring	F_bu	=	317	MPa	Ultimate	
Bearing	F_{by}	=	179	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressiv e	
	k_{t}	=	1			
	k c	=	1			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.057	kN	compressio n	
	Р	=	0	kN	Tension	

30 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

In plane moment	M _x	=	0.3859	kNm		
Out of plane moment	M_{y}	=	0.1841	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	616	mm²		
In-plane elastic section modulus	Z_{x}	=	9420.677 8	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	6709.733 3	mm³		
Stress from axial force	fa	=	P/A _g			
		=	0.09	MPa	compressio n	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x		_	
		=	40.96	MPa	compressio n	
Stress from out-of-plane	\mathbf{f}_{by}	=	M_y/Z_y		_	
bending		=	27.44	MPa	compressio n	
Tension						
3.4.3 Tension in rectangular tube	es					
	φF∟	=	104.50	MPa		
	T . L	_	10-1100	IVII a		
	4	0	104100	WII a		
		O R				
	φF _L	0	129.20	МРа		
COMPRESSION		O R				
COMPRESSION 3.4.8 Compression in columns, a	фF∟	O R =				
	фF∟	O R =				3.4.8.1
3.4.8 Compression in columns, a1. GeneralUnsupported length of	φF ∟ axial, gross sec	O R =	129.20	MPa		3.4.8.1
3.4.8 Compression in columns, a1. GeneralUnsupported length of member	φF L axial, gross sed L	O R =	129.20 1850			3.4.8.1
3.4.8 Compression in columns, a1. GeneralUnsupported length of memberEffective length factor	φF ∟ axial, gross sec	O R =	1 29.20 1850 1.00	MPa		3.4.8.1
3.4.8 Compression in columns, a1. GeneralUnsupported length of member	φF L axial, gross sed L	O R =	129.20 1850	MPa		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about	φF L axial, gross sed L k	O R = ection	1 29.20 1850 1.00	MPa mm		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y)	φF _L axial, gross sec L k r _y	O R = ection	1850 1.00 13.81	MPa mm		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about buckling axis (X)	φF _L axial, gross sec L k r _y r _x	O R = ction	1850 1.00 13.81 21.42	MPa mm		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about buckling axis (X) Slenderness ratio	φF _L axial, gross sec L k r _y r _x kLb/ry	O R =	1850 1.00 13.81 21.42 68.81	MPa mm		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about buckling axis (X) Slenderness ratio Slenderness ratio	φF _L axial, gross sec k r _y r _x kLb/ry kL/rx	O R =	1850 1.00 13.81 21.42 68.81 86.37	MPa mm		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about buckling axis (X) Slenderness ratio Slenderness ratio	φF _L axial, gross sec L k r _y r _x kLb/ry kL/rx	O R = = = = = = = = = = = = = = = = = =	1850 1.00 13.81 21.42 68.81 86.37 1.09	MPa mm		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about buckling axis (X) Slenderness ratio Slenderness ratio	φF _L axial, gross sec L k r _y r _x kLb/ry kL/rx λ D _c *	O R = = = = = = = = = = = = = = = = = =	1850 1.00 13.81 21.42 68.81 86.37 1.09 39.0	MPa mm		3.4.8.1
3.4.8 Compression in columns, a 1. General Unsupported length of member Effective length factor Radius of gyration about buckling axis (Y) Radius of gyration about buckling axis (X) Slenderness ratio Slenderness ratio	φF _L axial, gross sec L k ry r _x kLb/ry kL/rx λ D _c * S ₁ *	O R =	1850 1.00 13.81 21.42 68.81 86.37 1.09 39.0 0.24	MPa mm		3.4.8.1

31 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.auAddress: 21/1-7 JordaWeb: www.primeengineers.com.auPhone: (02) 8964 18

	k_2		2.04		1	T3.3(D)
3.4.17 Compression in componer compression), gross section - flat						T3.3(D)
Factored limit state stress	фF∟	=	94.54	МРа		3.4.15(2)
Limit 2	S ₂	=	3854.05			
Limit 1	S ₁	=	21.80			
Slenderness	S	=	104.06			
Elastic section modulus	Z	=	8	mm³		
Torsion modulus	J	=	2.52E+05 9420.677	mm ³		
(weak axis)	l _y	=	1.17E+05	mm ⁴		
Unbraced length for bending Second moment of area	L _b	=	950	mm		
BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections		gross se	ection rectang	gular		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.00		PASS	
Most adverse tensile limit state stress Most adverse compressive &	Fa	=	104.50	MPa		
Most adverse compressive limit state stress	Fa	=	59.18	MPa		
Factored limit state stress	φFL	=	104.50	MPa		
Limit 2	S ₂	=	49.94			
Limit 1	S ₁	=	12.06			
Slenderness	b/t	=	8			
·	t	=	3.5	mm		
Max. distance between toes of fillets of supporting elements for plate	b'	=	28			
olatee war bear eagee capported	\mathbf{k}_1	=	0.35			T3.3(D
3.4.10 Uniform compression in conplates 1. Uniform compression in compoplates with both edges supported	onents of colu					3.4.10.
flexural buckling				da a Mar		
Largest slenderness ratio for	kL/r	=	86.37			

32 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Web: www.primeengineers.com.au Phone: (02) 8964 18

Email: info@primeengineers.com.au

Max. distance between toes of fillets of supporting	b'	=	28	mm		
elements for plate						
Slenderness	t b/t	=	3.5 8	mm		
Limit 1	S ₁	=	12.06			
Limit 2	S_2	=	71.35			
Factored limit state stress	фҒ∟	=	104.50	МРа		
Most adverse in-plane bending limit state stress	F _{bx}	=	94.54	MPa		
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.43		PASS	
BENDING - OUT-OF-PLANE	aro the same	for out o	f nlana har	dina		
NOTE: Limit state stresses, φF _L a (doubly symmetric section)	are trie same i	or out-o	-piarie ben	uing		
Factored limit state stress	фҒ∟	=	94.54	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	94.54	MPa		
Most adverse out-of-plane bending capacity factor	f_{by}/F_{by}	=	0.29		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	d bending					4.1.1(2)
	Fa	=	59.18	MPa		3.4.8
	F_{ao}	=	104.50	MPa		3.4.10
	F_{bx}	=	94.54	MPa		3.4.17
	F_{by}	=	94.54	MPa		3.4.17
	f _a /F _a	=	0.002			
Check:	$f_a/F_a + f_{bx}/F_{bx} +$	f _{by} /F _{by} :	≤ 1.0			4.1.1
i.e.	0.73	≤	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.auAddress: 21/1-7 JordaWeb: www.primeengineers.com.auPhone: (02) 8964 18

			45 44005		1	ı
Slenderness	h/t	=	15.14285 7			
Limit 1	S ₁	=	33.38			
Limit 2	S_2	=	59.31			
Factored limit state stress	фҒ∟	=	58.90	MPa		
Stress From Shear force	f_{sx}	=	V/A _w			
			0.93	MPa		
3.4.25 Shear in webs (Minor Axis)						
-,						
Clear web height	b	=	28	mm		
	t	=	3.5	mm		
Slenderness	b/t	=	8			
Factored limit state stress	φF∟	=	58.90	MPa		
Stress From Shear force	f _{sy}	=	V/A_w			
	·		0.64	MPa		
Most adverseshear capacity					\dashv	
factor (Major Axis)	f_{sx}/F_{sx}	=	0.02	MPa		
Most adverseshear capacity factor (Minor Axis)	f_{sy}/F_{sy}	=	0.01	Мра	PASS	
· · · · · · · · · · · · · · · · · · ·						
COMBINED ACTIONS						
4.4 Combined Shear, Compresion	n and bending	9				
_						
Check:	$f_a/F_a + f_b/F_b + f_a$	$(f_s/F_s)^2 \le$	1.0			

11.1.3 Brace (typ.1)

Email: info@primeengineers.com.au

Job no. 21-174-2 **Date**: 17/01/2022

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
60x35x3.5	Brace 1					
Alloy and temper	6063-T5					AS1664.1
Tanaian	F_{tu}	=	152	MPa	Ultimate	T3.3(A)
Tension	F_{ty}	=	110	MPa	Yield	
Compression	F _{cy}	=	110	MPa		

34 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Web: www.primeengineers.com.au Phone: (02) 8964 1818

	F_su	=	90	MPa	Ultimate	
Shear	F_{sy}	=	62	MPa	Yield	
	F_{bu}	=	317	MPa	Ultimate	
Bearing	F _{by}	=	179	MPa	Yield	
	. 5,			🍝	170.0	
Modulus of elasticity	Е	=	70000	MPa	Compressive	
	k t	=	1			T3.4(B)
	k c	=	1			10.1(2)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.117	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	7.227E-19	kNm		
Out of plane moment	M_{y}	=	0.2362	kNm		
DEGICAL OTREGOES						
DESIGN STRESSES Gross cross section area	۸		616	mm ²		
In-plane elastic section	A_g	=				
modulus	Z_{x}	=	9420.6778	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	6709.7333	mm³		
Stress from axial force	fa	=	P/A _g			
		=	0.19	MPa	compression	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x			
	_	=	0.00	MPa	compression	
Stress from out-of-plane	f_{by}	=	M_y/Z_y			
bending 		=	35.20	MPa	compression	
Tension						
3.4.3 Tension in rectangular tubes			404.50	MD.		
	фҒ∟	=	104.50	MPa		
	4 E	OR	120.20	MDo		
	фҒ∟	=	129.20	MPa		
COMPRESSION						
3.4.8 Compression in columns, ax 1. General	cial, gross	section	1			3.4.8.1
Unsupported length of member	L	=	1000	mm		
Effective length factor	k	=	1.00	111111		
Radius of gyration about						
buckling axis (Y)	r _y	=	13.81	mm		

35 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Email: info@primeengineers.com.au **Web:** www.primeengineers.com.au

Radius of gyration about buckling axis (X)	r _x	=	21.42	mm		
Slenderness ratio	kLb/ry	=	72.43			
Slenderness ratio	kL/rx	=	46.69			
Slenderness parameter	λ	=	0.91			
	D_c^*	=	39.0			
	S_1^*	=	0.24			
	S_2^*	=	1.25			
	фсс	=	0.808			
Factored limit state stress	фГ∟	=	67.56	MPa		
2. Sections not subject to torsiona	al or torsior	nal-flex	kural buckling	1		3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	72.43			
3.4.10 Uniform compression in coflat plates	mponents	of colu	umns, gross s	section -		
1. Uniform compression in components of columns, gross section - flat plates with both edges supported						3.4.10.1
	k ₁	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	28			
, p	t	=	3.5	mm		
Slenderness	b/t	=	8			
Limit 1	S_1	=	12.06			
Limit 2	S_2	=	49.94			
Factored limit state stress	фГ∟	=	104.50	MPa		
Most adverse compressive limit	Fa	_	67.56	MPa	1	
state stress	га	=	07.50	IVIFA		
Most adverse tensile limit state stress	Fa	=	104.50	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.00		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, extubes, box sections	treme fibre	e, gros	s section rec	tangular		
Unbraced length for bending	L _b	=	1000	mm		
Second moment of area (weak axis)	l _y	=	117420.33	mm ⁴		

36 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Web: www.primeengineers.com.au Phone: (02) 8964 18

Email: info@primeengineers.com.au

Torsion modulus	J	=	251961.03	mm³		
Elastic section modulus	Z	=	9420.6778	${\sf mm}^3$		
Slenderness	S	=	109.54			
Limit 1	S ₁	=	21.80			
Limit 2	S_2	=	3854.05			
Factored limit state stress	φF _L	=	94.37	MPa		3.4.15(2)
3.4.17 Compression in componer compression), gross section - flat						
, ,, ,						To o(D)
	k ₁	=	0.5			T3.3(D)
	k ₂	=	2.04			T3.3(D)
Max. distance between toes of			20			
fillets of supporting elements for plate	b'	=	28	mm		
ioi piate	t	_	3.5	mm		
Slenderness	b/t	=	3.5 8	111111		
Limit 1	S ₁	=	12.06			
Limit 2	S ₂	=	71.35			
LIIIII Z	32	=	71.33			
Factored limit state stress	φF∟	=	104.50	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	94.37	MPa		
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.00		PASS	
BENDING - OUT-OF-PLANE						
	46	fo	t of mlone b	a 10 alim a		
NOTE: Limit state stresses, φF _L a (doubly symmetric section)	are tne sarr	ie ior (out-ot-plane b	enaing		
Factored limit state stress	фҒ∟	=	94.37	MPa		
Most adverse out-of-plane	F _{by}	=	94.37	MPa	1	
bending limit state stress	- Dy		5 .101	🏎		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.37		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	d bending					4.1.1(2)
	Fa	=	67.56	MPa		3.4.8
	F _{ao}	=	104.50	MPa		3.4.10
	ı ao	_	104.50	IVIFa	1	5.4.10

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

	F_bx	=	94.37	MPa		3.4.17
	F_{by}	=	94.37	MPa		3.4.17
	f_a/F_a	=	0.003			
Check:	$f_a/F_a + f_{bx}$	/F _{bx} + f	$_{by}/F_{by} \le 1.0$			4.1.1
i.e.	0.38	≤	1.0		PASS	(0)
SHEAR						
3.4.24 Shear in webs (Major						4.1.1(2)
Axis)						,
Clear web height	h	=	53	mm		
	t	=	3.5	mm		
Slenderness	h/t	=	15.142857			
Limit 1	S ₁	=	33.38			
Limit 2	S_2	=	59.31			
Littiit Z	02	_	39.31			
Factored limit state stress	φFL	=	58.90	MPa		
Stress From Shear force	f _{sx}	=	V/A _w			
	- CA		0.02	MPa		
3.4.25 Shear in webs (Minor						
Axis)						
Clear web beight	b	_	28	mm		
Clear web height	t	=	3.5	mm mm		
Slenderness	b/t	=	8	111111		
Oleride Mess	D/ t	-	O			
Factored limit state stress	φFL	=	58.90	MPa		
Stress From Shear force	f _{sy}	=	V/A _w			
	-,		0.73	MPa		
Most adverseshear capacity	f _{sx} /F _{sx}	_	0.00	MPa	1	
factor (Major Axis)	ISX/ FSX	=	0.00	IVIFA		
Most adverseshear capacity	f_{sy}/F_{sy}	=	0.01	Мра	PASS	
factor (Minor Axis)	· sy/ · sy		0.01		. , .00	
COMPINED ACTIONS						
COMBINED ACTIONS	n and han	dina				
4.4 Combined Shear, Compresion	ni and bene	uirig				
Check:	f_/F, f. /l	F. + /f	$(F_{s})^{2} \le 1.0$			
					DACC	
i.e.	0.38	≤	1.0		PASS	l

11.1.4 Brace (typ.2)

Job no. 21-174-2 **Date:** 17/01/2022

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
30x20x1.5	Brace 2					
Alloy and temper	6063-T5					AS1664.1
Tension	F_{tu}	=	152	MPa	Ultimate	T3.3(A)
Tension	F_{ty}	=	110	MPa	Yield	
Compression	F_{cy}	=	110	MPa		
Shear	F_{su}	=	90	MPa	Ultimate	
Oriear	F_{sy}	=	62	MPa	Yield	
Pooring	F_bu	=	317	MPa	Ultimate	
Bearing	F_by	=	179	MPa	Yield	
Modulus of elasticity	Е	=	70000	MPa	Compressive	
	k_{t}	=	1			T2 4/D)
	k c	=	1			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.272	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	0	kNm		
Out of plane moment	M_y	=	0.0154	kNm		
DESIGN STRESSES						
Gross cross section area	A_g	=	141	mm²		
In-plane elastic section modulus	Z_{x}	=	1141.05	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	894.575	mm³		
Stress from axial force	fa	=	P/A _g			
		=	1.93	MPa	compression	
	_	=	0.00	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x	MD.		
		=	0.00	MPa	compression	
	\mathbf{f}_{by}	=	M_y/Z_y			

39 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

Stress from out-of-plane bending		=	17.21	MPa	compression	
Tension						
3.4.3 Tension in rectangular tube	S					
	φF _L	= OR	104.50	MPa		
	φFL	=	129.20	MPa		
COMPRESSION						
3.4.8 Compression in columns, at 1. General	xial, gross	section	1			3.4.8.1
Unsupported length of member	L	=	1000	mm		
Effective length factor	k	=	1.00			
Radius of gyration about buckling axis (Y)	\mathbf{r}_{y}	=	7.97	mm		
Radius of gyration about buckling axis (X)	r_{x}	=	11.02	mm		
Slenderness ratio	kLb/ry	=	125.55			
Slenderness ratio	kL/rx	=	90.76			
Slenderness parameter	λ	=	1.58			
	D _c *	=	39.0			
	S ₁ *	=	0.24			
	S ₂ *	=	1.25			
	фсс	=	0.802			
Factored limit state stress	φF _L	=	35.14	MPa		
2. Sections not subject to torsiona	al or torsio	nal-flex	ural buckling	1		3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	125.55			
3.4.10 Uniform compression in coflat plates	omponents	of colu	ımns, gross s	section -		
Uniform compression in compo plates with both edges supported		olumns	, gross secti	on - flat		3.4.10.1
	k ₁	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	17			
1	t	=	1.5	mm		
Slenderness	b/t	=	11.333333			
Limit 1	S ₁	=	12.06			
Limit 2	S_2	=	49.94			
Lillin Z	J ₂	_	70.07		I	I

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

	фГ∟	=	104.50	MPa		
Most adverse compressive limit state stress	Fa	=	35.14	MPa		
Most adverse tensile limit state stress	Fa	=	104.50	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.05		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, ex tubes, box sections	treme fibre	e, gros	s section rect	angular		
Unbraced length for bending	L _b	=	1000	mm		
Second moment of area (weak axis)	ly	=	8945.75	mm ⁴		
Torsion modulus	J	=	17744.206	mm³		
Elastic section modulus	Z	=	1141.05	mm³		
Slenderness	S	=	181.13			
Limit 1	S ₁	=	21.80			
Limit 2	S ₂	=	3854.05			
Factored limit state stress	фF∟	=	92.36	MPa		3.4.15(i
3.4.17 Compression in component compression), gross section - flat						
compression, gross section hat	prace ma	i botti	cages suppo	100		
compression), gross section mat		=		ica		T3.3(I
compression, gross seedien mat	k ₁	=	0.5	icu		
·				iou		
Max. distance between toes of fillets of supporting elements	k ₁	=	0.5	mm		
Max. distance between toes of	k ₁ k ₂	=	0.5 2.04			T3.3(I
Max. distance between toes of fillets of supporting elements	k ₁ k ₂ b'	= =	0.5 2.04	mm		
Max. distance between toes of fillets of supporting elements for plate	k ₁ k ₂ b' t	= =	0.5 2.04 17 1.5	mm		
Max. distance between toes of fillets of supporting elements for plate Slenderness	k ₁ k ₂ b' t b/t	= = = =	0.5 2.04 17 1.5 11.333333	mm		
Max. distance between toes of fillets of supporting elements for plate Slenderness Limit 1	k ₁ k ₂ b' t b/t S ₁	= = = = =	0.5 2.04 17 1.5 11.333333 12.06	mm		
Max. distance between toes of fillets of supporting elements for plate Slenderness Limit 1 Limit 2	k ₁ k ₂ b' t b/t S ₁ S ₂	= = = = =	0.5 2.04 17 1.5 11.333333 12.06 71.35	mm mm		

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, ϕF_L (doubly symmetric section)	are the san	ne for d	out-of-plane b	ending		
Factored limit state stress	фҒ∟	=	92.36	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	92.36	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.19		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression ar	nd bending					4.1.1(2)
	Fa	=	35.14	MPa		3.4.8
	Fao		104.50	MPa		3.4.10
	F_{bx}	=	92.36	MPa		3.4.17
	F_{by}	=	92.36	MPa		3.4.17
	f _a /F _a	=	0.055			
Check:	$f_a/F_a + f_{bx}/$	F _{bx} + f	$_{by}/F_{by} \le 1.0$			4.1.1
i.e.	0.24	≤	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)
Clear web height	h	=	27	mm		
-	t	=	1.5	mm		
Slenderness Limit 1	h/t S₁	=	18 33.38			
Limit 2	S ₁	=	59.31			
LIIIII Z	32	=	39.31			
Factored limit state stress	φF∟	=	58.90	MPa		
Stress From Shear force	$\mathbf{f}_{\mathbf{sx}}$	=	V/A_w			
3.4.25 Shear in webs (Minor Axis)			0.01	MPa		
Clear web height	b	=	17	mm		
Slenderness	t b/t	=	1.5 11.333333	mm		
				MDo		
Factored limit state stress Stress From Shear force	φF∟ f	=	58.90 V/A _w	MPa		
Oness i form offeat force	f _{sy}	=	v/~w		l	<u> </u>

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

			0.22	MPa	
Most adverseshear capacity factor (Major Axis)	f _{sx} /F _{sx}	=	0.00	МРа	
Most adverseshear capacity factor (Minor Axis)	f_{sy}/F_{sy}	=	0.00	Мра	PASS
COMBINED ACTIONS	on and hand	lina			
4.4 Combined Shear, Compresion	f _a /F _a + f _b /F	J	$F_0^2 < 1.0$		
i.e.		≤ (1s/1	1.0		PASS

11.1.5 Middle Beam

Job no. 21-174-2 **Date**: 17/01/2022

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
30x20x1.5	Middle Beam					
Alloy and temper	6063-T5					AS1664.1
	F _{tu}	=	152	MPa	Ultimate	T3.3(A)
Tension	F _{ty}	=	110	MPa	Yield	()
Compression	F _{cy}	=	110	MPa		
Chaor	F_su	=	90	MPa	Ultimate	
Shear	F_{sy}	=	62	MPa	Yield	
Bearing	F_bu	=	317	MPa	Ultimate	
Dearing	F_by	=	179	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressive	
	\mathbf{k}_{t}	=	1			TO 4(D)
	k _c	=	1			T3.4(B)
FEM ANALYSIS RESULTS						
	_		_			
Axial force	P	=	0	kN	compression	
	P	=	0.162	kN	Tension	
In plane moment	M_x	=	0.0477	kNm		

43 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

Out of plane moment	M_{y}	=	0.0018	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	141	mm²		
In-plane elastic section	Z_{x}	=	1141.05	mm³		
modulus	- x	_	1141.00			
Out-of-plane elastic section mod.	Z_y	=	894.575	mm³		
Stress from axial force	fa	=	P/A _g			
		=	0.00	MPa	compression	
		=	1.15	MPa	Tension	
Stress from in-plane bending	f_{bx}	=	M_x/Z_x			
	_	=	41.80	MPa	compression	
Stress from out-of-plane	f_{by}	=	M_y/Z_y			
bending 		=	2.01	MPa	compression	
Tension						
3.4.3 Tension in rectangular tubes			404.50	MD.		
	φF∟	=	104.50	MPa		
	4.5	OR	400.00	MDa		
	φF∟	=	129.20	MPa		
COMPRESSION						
3.4.8 Compression in columns, as	kial, gross se	ection				
1. General						3.4.8.1
Unsupported length of member	L	=	2040	mm		
Effective length factor	k	=	1.00			
Radius of gyration about	r _y	=	7.97	mm		
buckling axis (Y)	Ty	_	1.31	111111		
Radius of gyration about buckling axis (X)	r _x	=	11.02	mm		
Slenderness ratio	kLb/ry	=	130.57			
Slenderness ratio	kL/rx	=	185.16			
Slenderness parameter	λ	=	2.34			
Oleridemess parameter	D _c *	=	39.0			
	Տ₁*	=	0.24			
	S ₂ *		1.25			
		=				
	фсс	=	0.907			
Factored limit state stress	φFL	=	18.28	MPa		
2. Sections not subject to torsiona	al or torsiona	al-flexura	al buckling			3.4.8.2
Largest slenderness ratio for	kL/r	=	185.16			
flexural buckling	, -					

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

1. Uniform compression in compo	nents of co	lumns,	gross section	- flat		3.4.10.1
plates with both edges supported	le.		0.25			
May distance between tops of	k 1	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	17			
•	t	=	1.5	mm		
Slenderness	b/t	=	11.333333			
Limit 1	S ₁	=	12.06			
Limit 2	S_2	=	49.94			
Factored limit state stress	φFL	=	104.50	MPa		
Most adverse compressive limit state stress	Fa	=	18.28	MPa		ļ
Most adverse tensile limit state stress	Fa	=	104.50	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.01		PASS	
BENDING - IN-PLANE 3.4.15 Compression in beams, exi	treme fibre,	gross	section rectar	ngular		
BENDING - IN-PLANE 3.4.15 Compression in beams, exitubes, box sections	treme fibre, L _b	gross =	section rectar 1040	ngular mm		
BENDING - IN-PLANE 3.4.15 Compression in beams, extubes, box sections Unbraced length for bending Second moment of area (weak		=				
BENDING - IN-PLANE 3.4.15 Compression in beams, exitubes, box sections Unbraced length for bending Second moment of area (weak axis)	L _b	=	1040	mm mm ⁴		
BENDING - IN-PLANE 3.4.15 Compression in beams, extubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus	L_b	=	1040 8945.75	mm		
BENDING - IN-PLANE 3.4.15 Compression in beams, extubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus	L _b I _y J	=	1040 8945.75 17744.206	mm mm ⁴ mm ³		
BENDING - IN-PLANE 3.4.15 Compression in beams, exitubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness	L _b Iy J Z	= = =	1040 8945.75 17744.206 1141.05	mm mm ⁴ mm ³		
BENDING - IN-PLANE 3.4.15 Compression in beams, exitubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness Limit 1	L _b I _y J Z S	= = =	1040 8945.75 17744.206 1141.05 188.38	mm mm ⁴ mm ³		
BENDING - IN-PLANE 3.4.15 Compression in beams, exitubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness Limit 1 Limit 2	L _b I _y J Z S S1	= = = =	1040 8945.75 17744.206 1141.05 188.38 21.80	mm mm ⁴ mm ³		 3.4.15(2
BENDING - IN-PLANE 3.4.15 Compression in beams, exitubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness Limit 1 Limit 2 Factored limit state stress	L _b I _y J Z S S ₁ S ₂ ΦF L	= = = = = = =	1040 8945.75 17744.206 1141.05 188.38 21.80 3854.05 92.19	mm mm ⁴ mm ³ mm ³		3.4.15(2
BENDING - IN-PLANE	L _b I _y J Z S S ₁ S ₂ ΦF L	= = = = = = =	1040 8945.75 17744.206 1141.05 188.38 21.80 3854.05 92.19	mm mm ⁴ mm ³ mm ³		3.4.15(2 T3.3(D

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Max. distance between toes of fillets of supporting elements for plate	b'	=	17	mm		
	t	=	1.5	mm		
Slenderness	b/t	=	11.333333			
Limit 1	S ₁	=	12.06			
Limit 2	S_2	=	71.35			
Factored limit state stress	фF∟	=	104.50	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	92.19	MPa		
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.45		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, φF _L a (doubly symmetric section)	are the same	for out	t-of-plane ber	nding		
Factored limit state stress	фҒ∟	=	92.19	MPa		
Most adverse out-of-plane bending limit state stress	F_by	=	92.19	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.02		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	d bending					4.1.1(2)
	Fa	=	18.28	MPa		3.4.8
	Fao	=	104.50	MPa		3.4.10
	F_bx	=	92.19	MPa		3.4.17
	F_by	=	92.19	MPa		3.4.17
	f _a /F _a	=	0.011			
Check:	$f_a/F_a + f_{bx}/F_b$	x + fhv/l				4.1.1
i.e.	0.49	,, · · ·by, · ≤	1.0		PASS	(3)
SHEAR 3.4.24 Shear in webs (Major Axis)						4.1.1(2)
,						
Clear web height	h	=	27	mm		
Slenderness	t h/t	=	1.5 18	mm		

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Limit 1	S ₁	_	33.38		1
		=			
Limit 2	S_2	=	59.31		
Factored limit state stress	φF∟	_	58.90	MPa	
	•	=		IVIFA	
Stress From Shear force	f_{sx}	=	V/A _w		
0.405.01			0.59	MPa	
3.4.25 Shear in webs (Minor					
Axis)					
Clear web height	b	=	17	mm	
-	t	=	1.5	mm	
Slenderness	b/t	=	11.333333		
Factored limit state stress	φF∟	=	58.90	MPa	
Stress From Shear force	f_{sy}	=	V/A_w		
			0.10	MPa	
Most adverseshear capacity	f _{sx} /F _{sx}	=	0.01	MPa	
factor (Major Axis)	13% 1 3%	_	0.01	u	
Most adverseshear capacity	f _{sy} /F _{sy}	=	0.00	Мра	PASS
factor (Minor Axis)				•	
COMPINED ACTIONS					
COMBINED ACTIONS 4.4 Combined Shear, Compresion	n and handin	200			
4.4 Combined Shear, Compresion	ii and bendin	iy			
Check:	$f_a/F_a + f_b/F_b$	+ (f _a /F _a	o ² < 1 ∩		
					DACC
i.e.	0.46	≤	1.0		PASS

11.1.6 Corner Beam

Email: info@primeengineers.com.au

Job no. 21-174-2 **Date**: 17/01/2022

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
30x20x1.5	Corner Beam					
Alloy and temper	6063-T5					AS1664.1
Tanaian	Ftu	=	152	MPa	Ultimate	T3.3(A)
Tension	F_{ty}	=	110	MPa	Yield	
Compression	F _{cy}	=	110	MPa		
Shear	F _{su}	=	90	MPa	Ultimate	

47 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Web: www.primeengineers.com.au Phone: (02) 8964 1818

	F_{sy}	=	62	MPa	Yield	
	F _{bu}	=	317	MPa	Ultimate	
Bearing	F _{by}	=	179	MPa	Yield	
	-,					
Modulus of elasticity	Е	=	70000	MPa	Compressiv	
					е	
	k_{t}	=	1			
	k _c	=	1			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0	kN	compression	
Axial force	' P	=	0.201	kN	Tension	
In plane moment	M _x	=	0.201	kNm	TOTISION	
Out of plane moment	M _y	=	0.0062	kNm		
Cut of plane memoria	···y		0.0002			
DESIGN STRESSES						
Gross cross section area	A_g	=	141	mm ²		
In-plane elastic section modulus	Z_{x}	=	1141.05	mm³		
Out-of-plane elastic section	7		004 575	mm³		
mod.	Z_{y}	=	894.575	IIIIII		
Stress from axial force	fa	=	P/A _g			
		=	0.00 1.43	MPa MPa	compression Tension	
Stress from in-plane bending	f_{bx}	=	1.43 M _x /Z _x	IVIFA	Terision	
oneds from in plane bending	• DX	=	69.06	MPa	compression	
Stress from out-of-plane	f_{by}	=	M_y/Z_y	•		
bending	,	=	6.93	MPa	compression	
Tension						
3.4.3 Tension in rectangular tubes						
	φFL	=	104.50	MPa		
		O R				
	φFL	=	129.20	MPa		
	, -					
COMPRESSION						
3.4.8 Compression in columns, ax 1. General	ial, gross s	ection				3.4.8.1
Unsupported length of member	L	=	2820	mm		
Effective length factor	k	=	1.00	-		
Radius of gyration about	\mathbf{r}_{y}	_	7.97	mm		
buckling axis (Y)	Ту	=	1.31	111111		

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Radius of gyration about buckling axis (X)	r _x	=	11.02	mm		
Slenderness ratio	kLb/ry	=	232.26			
Slenderness ratio	kL/rx	=	255.95			
	,		0.00			
Slenderness parameter	λ	=	3.23			
	D _c * S₁*	=	39.0			
	S ₁	=	0.24			
		=	1.25			
	фсс	=	0.950			
Factored limit state stress	φF∟	=	10.02	MPa		
2. Sections not subject to torsiona	al or torsiona	ıl-flexur	al buckling			3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	255.95			
3.4.10 Uniform compression in co	mponents o	f colum	ns, gross se	ction - flat		
Uniform compression in compo plates with both edges supported		umns, g	gross section	ı - flat		3.4.10.1
	\mathbf{k}_1	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	17			
i.e. plate	t	=	1.5	mm		
Slenderness	b/t	=	11.33333			
			3			
Limit 1	S ₁	=	12.06			
Limit 2	S_2	=	49.94			
Factored limit state stress	φF _L	=	104.50	MPa		
Most adverse compressive limit state stress	Fa	=	10.02	MPa		
Most adverse tensile limit state stress	Fa	=	104.50	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.01		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, extubes, box sections	treme fibre,	gross s	section rectai	ngular		
Unbraced length for bending	L_b	=	1850	mm		

49 | Page Address: 21/1-7 Jordan St, Gladesville NSW 2111 Phone: (02) 8964 1818

							_
Second moment of area (weak axis)	ly	=	8945.75	mm ⁴			ĺ
Torsion modulus	J	=	17744.20 6	mm³			
Elastic section modulus	Z	=	1141.05	${\sf mm}^3$			
Slenderness	S	=	335.10				
Limit 1	S ₁	=	21.80				
Limit 2	S_2	=	3854.05				
Factored limit state stress	φF∟	=	89.12	MPa		3.4.15(2)	
3.4.17 Compression in componen compression), gross section - flat							
	\mathbf{k}_1	=	0.5			T3.3(D)	
	k_2	=	2.04			T3.3(D)	
Max. distance between toes of fillets of supporting elements for plate	b'	=	17	mm			
·	t	=	1.5	mm			
Slenderness	b/t	=	11.33333				
Limit 1	S ₁	=	3 12.06				
Limit 2	S ₂	=	71.35				
	O ₂		7 1100				
Factored limit state stress	фГ∟	=	104.50	MPa			
Most adverse in-plane bending limit state stress	F _{bx}	=	89.12	MPa			
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.77		PASS		
BENDING - OUT-OF-PLANE							
NOTE: Limit state stresses, φF _L and (doubly symmetric section)	re the same	for out	-of-plane bei	nding			
Factored limit state stress	φF _L	=	89.12	MPa			
Most adverse out-of-plane bending limit state stress	F _{by}	=	89.12	MPa			
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.08		PASS		
COMBINED ACTIONS							
4.1.1 Combined compression and	bending					4.1.1(2)	1

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

estored limit state stress From Shear for Stress From Shear for stress Adverseshear catter (Major Axis) at adverseshear catter (Minor Axis) MBINED ACTIONS Combined Shear,	
ess From Shear for st adverseshear ca for (Major Axis) st adverseshear ca for (Minor Axis)	
ess From Shear for st adverseshear ca for (Major Axis) st adverseshear ca for (Minor Axis)	
ess From Shear for st adverseshear ca for (Major Axis) st adverseshear ca	
ess From Shear for	
tored limit state str	
nderness	
ar web height	
s)	
.25 Shear in webs	
ess From Shear for	
ctored limit state str	
it 2	
it 1	
nderness	
ar web height	
.24 Shear in webs s)	4.1.1(2
EAR	
	4.1.
	3.4.1
	3.4.1
	3.4.

Address: 21/1-7 Jordan St, Gladesville NSW 2111 Phone: (02) 8964 1818

Email: info@primeengineers.com.au **Web:** www.primeengineers.com.au

11.1.7 Centre Pole

Job no. 21-174-2 **Date**: 17/01/2022

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
48x1.8	Centre Pole					
Alloy and temper	6063-T5					AS1664.1
	Ftu	=	152	MPa	Ultimate	T3.3(A)
Tension	F _{ty}	=	110	MPa	Yield	
Compression	F _{cy}	=	110	MPa		
01	F _{su}	=	90	MPa	Ultimate	
Shear	F_{sy}	=	62	MPa	Yield	
Decrina	F_bu	=	317	MPa	Ultimate	
Bearing	F_by	=	179	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressive	
	k_{t}	=	1.0			TO 4(D)
	kc	=	1.1			T3.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.516	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	M_{x}	=	0	kNm		
Out of plane moment	M_y	=	0	kNm		
DESIGN STRESSES						
Gross cross section area	A_g	=	261.25485	mm^2		
In-plane elastic section modulus	Z_{x}	=	2908.7461	mm³		
Out-of-plane elastic section mod.	Z_{y}	=	2908.7461	mm³		
Stress from axial force	fa	=	P/A _g			
		=	1.98	MPa	compression	
Others for a land		=	0.00	MPa	Tension	
Stress from in-plane bending	f _{bx}	=	M _x /Z _x 0.00	MDa	compression	
		=	0.00	MPa	compression	<u> </u>

52 | Page

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

Email: <u>info@primeengineers.com.au</u> **Web:** <u>www.primeengineers.com.au</u>

Stress from out-of-plane bending	\mathbf{f}_{by}	=	M_y/Z_y 0.00	MPa	compression	
Tension					,	
3.4.3 Tension in rectangular tube						3.4.3
	фГ∟	= OR	122.27	MPa		
	φFL	=	160.21	MPa		
COMPRESSION						
3.4.8 Compression in columns, a 1. General	xial, gross	sectior	1			3.4.8.1
Unsupported length of member	L	=	400	mm		
Effective length factor	k	=	1.00			
Radius of gyration about buckling axis (Y)	r _y	=	16.35	mm		
Radius of gyration about buckling axis (X)	r_{x}	=	16.35	mm		
Slenderness ratio	kLb/ry	=	24.47			
Slenderness ratio	kL/rx	=	24.47			
Slenderness parameter	λ	=	0.309			
	D_c^*	=	39.0			
	S ₁ *	=	0.54			
	S_2^*	=	1.25			
	фсс	=	0.935			
Factored limit state stress	фГ∟	=	91.85	MPa		
2. Sections not subject to torsion	al or torsior	nal-flex	rural buckling			3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	24.47			
3.4.11 Uniform compression in c	omponents	of colu	ımns, gross s	section -		
flat plates Uniform compression in compon- plates with both edges, walls of r				- curved		3.4.11
plated mar boar dagod, mand or r	k ₁	=	0.35			T3.3(D)
mid-thickness radius of round tubular column or maximum	R _m	=	23.1			, ,
mid-thickness radius	t	=	1.8	mm		
Slenderness	ι R _m /t	=	12.833333	111111		
Limit 1	S ₁	_	1.69			
Limit 2	S ₁	=	672.46			
Limit 4	U 2	-	012.70			

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Factored limit state stress	φF _L	=	103.88	MPa		
Most adverse compressive limit state stress	Fa	=	91.85	MPa		
Most adverse tensile limit state stress	Fa	=	122.27	MPa		
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.02		PASS	
BENDING - IN-PLANE						
3.4.13 Compression in beams, extubes	treme fibre	e, gros	s section rour	nd or oval		
Unbraced length for bending	L _b	=	400	mm		
Second moment of area (weak axis)	ly	=	6.98E+04	mm ⁴		
Torsion modulus	J	=	1.40E+05	$\rm mm^3$		
Elastic section modulus	Z	=	2908.7461	mm^3		
	R _b /t	=	12.83			
Limit 1	S ₁	=	17.65			
Limit 2	S ₂	=	79.80			
Factored limit state stress	фГ∟	=	122.27	MPa		3.4.13
3.4.18 Compression in component edges supported	ts of beam	ıs - cı	ırverd plates ı	with both		
	k 1	=	0.5			T3.3(D)
	k_2	=	2.04			T3.3(D)
mid-thickness radius of round						
tubular column or maximum mid-thickness radius	R_b	=	23.1	mm		
	t	=	1.8	mm		
Slenderness	R _b /t	=	12.833333			
Limit 1	S ₁	=	10.67			
Limit 2	S_2	=	79.80			
Factored limit state stress	фГ∟	=	101.17	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	101.17	MPa		
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.00		PASS	
BENDING - OUT-OF-PLANE						

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

NOTE: Limit state stresses, φF _L (doubly symmetric section)	are the san	ne for o	ut-of-plane l	bending		
Factored limit state stress	φF∟	=	101.17	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	101.17	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.00		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression as	nd bending					4.1.1
	Fa	=	91.85	MPa		3.4.11
	Fao	=	103.88	MPa		3.4.11
	F_bx	=	101.17	MPa		3.4.18
	F_by	=	101.17	MPa		3.4.18
	f _a /F _a	=	0.022			
Check:	$f_a/F_a + f_{bx}/$	$F_{bx} + f_{by}$	$/F_{by} \leq 1.0$			4.1.1
i.e.	0.02	≤	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						3.4.24
	R	=	24	mm		
	t	=	1.8	mm		
Equivalent h/t	h/t	=	29.58			
Limit 1	S ₁	=	33.38			
Limit 2	S ₂	=	59.31			
Factored limit state stress	φГ∟	=	58.90	MPa		
Stress From Shear force	$\mathbf{f}_{\mathbf{sx}}$	=	V/A_w			
3.4.25 Shear in webs (Minor			0.00	MPa		3.4.24
Axis)						3.4.24
Clear web height	R	=	24	mm		
	t	=	1.8	mm		
Equivalent h/t	h/t	=	29.58			
Factored limit state stress	φFL	=	58.90	MPa		
Stress From Shear force	\mathbf{f}_{sy}	=	V/A_{w}			
			0.00	MPa		

Address: 21/1-7 Jordan St, Gladesville NSW 2111 **Phone:** (02) 8964 1818

Most adverseshear capacity factor (Major Axis)	f _{sx} /F _{sx}	=	0.00	MPa		
Most adverseshear capacity factor (Minor Axis)	f_{sy}/F_{sy}	=	0.00	Мра	PASS	
COMBINED ACTIONS						
4.4 Combined Shear, Compresid		4.4				
Check:	$f_a/F_a + f_b/F$	$F_b + (f_s/F_s)$	$(s)^2 \le 1.0$			
i.e.	0.02	≤	1.0		PASS	

11.1.8 Summary Forces

MEMBER(S)	Section	b	d	t	Vx	Vy	Р	Mx	Му
		mm	mm	mm	kN	kN	kN	kN.m	kN.m
Post	120x85x3	85	120	3	-0	0.048	-0.524	0.8242	-0.2379
Cantilever Beam	60x35x3.5	35	60	3.5	-0.48	0.327	-0.057	-0.3859	0.1841
Brace 1	60x35x3.5	35	60	3.5	0.008	-0.375	-0.117	7.227E-19	0.2362
Brace 2	30x20x1.5	20	30	1.5	-0	0.026	-0.272	0	0.0154
Middle Beam	30x20x1.5	20	30	1.5	0.069	-0.012	0.162	-0.0477	0.0018
Corner Beam	30x20x1.5	20	30	1.5	-0.11	-0.026	0.201	-0.0788	-0.0062

MEMBER(S)	Section	d	t	Vx	Vy	P (Axial)	Mx	Му
		mm	mm	kN	kN	kN	kN.m	kN.m
Centre Pole	48x1.8	48	1.8	0	0	-0.516	0	0

Email: info@primeengineers.com.auAddress: 21/1-7 Jordan St, Gladesville NSW 2111Web: www.primeengineers.com.auPhone: (02) 8964 1818

12 Appendix 'C' - Anchorage Design

ALL**FASTENERS**

AFOS 2.0.3 (12012022) - Extended report

Company: Prime Consulting Engineers Pty. Ltd. E-mail: info@primeengineers.com.au

Designer: KZ Phone: 02 8964 1818

Designer: KZ Address: 21/1-7 Jordan St, Gladesville

Fax:

 Project:
 3.5m SQ Cantilever Umbrella
 Date:
 1/21/2022

 Comments:
 Page:
 1 / 7

1. Input Data

Selected anchors:

HLA-Z1 M10
 Sleeve anchor
 Zinc plated

Design based on AS 5216

- Assessment ETA-02/0030 (SZ) Issued by DIBt, on 9/13/2019
- · Effective anchorage depth het = 80 mm
- Drilled hole Φ x h₀ = 15.0 x 104 mm

Base material:

- Cracked concrete, Thickness of base material h=180mm Strength class 32MPa, f'c=32.0N/mm²
- Wide concrete reinforcement Rebar spacing a≥150mm for all Ø or a≥100mm for Ø≤10mm
- · No edge and stirrup reinforcement
- · Hammer drilled hole

Action loads:

· Predominantly static and quasi-static design loads

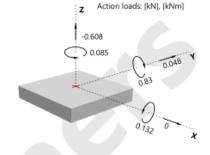
Installation:

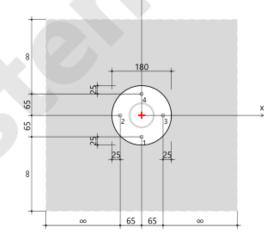
- · Base plate lies on the concrete surface directly
- Without gap filling

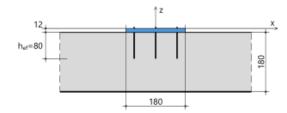
Base plate:

- G250, E=200000N/mm²
 f_y=250N/mm², φ_s=0.741, f_{yd}= φ_s · f_y
- · Assumed: elastic plate
- Current thickness: 12.0mm σ/f_{yd} =50.6/185.2=27.3%
- Circle

Diameter: 180 mm


Profile:


- Circular Hollow Section: 76.1x3.2 CHS H x W x T x FT [mm]: 76 x 76 x 3.2 x 0.0 Action point [mm]: [0, 0] Rotation counterclockwise: 0°
- · No profile stiffness


Coordinates of anchors [mm]:

			Slotte	d hole
No.	X	y	L-x	L-y
1	0.0	-65.0		
2	-65.0	0.0		
3	65.0	0.0		
4	0.0	65.0		

Allfasteners Pty Ltd, 78-84 Logistics Street, Keilor Park, VIC 3042, Australia, Phone 1800 255349, www.allfasteners.com.au

Address: 21/1-7 Jordan St, Gladesville NSW 2111 Phone: (02) 8964 1818

Email: <u>info@primeengineers.com.au</u> **Web:** <u>www.primeengineers.com.au</u>

AFOS 2.0.3 (12012022) - Extended report

Company: Prime Consulting Engineers Pty. Ltd. E-mail: info@primeengineers.com.au

Designer: KZ Address: 21/1-7 Jordan St, Gladesville

 Address:
 21/1-7 Jordan St, Gladesville
 Fax:

 Project:
 3.5m SQ Cantilever Umbrella
 Date:
 1/21/2022

 Comments:
 Page:
 2 / 7

Load cases, design load: [kN], [kNm]

Active	No.	Nz	V,	V _y	Mz	Mx	My	Utilization	Decisive
•	1	-0.608	0.0	0.048	0.085	0.132	0.83	39.6%	
- 3	2	0.251	0.0	0.012	0.02	0.032	-0.62	ŝ i	

Phone:

02 8964 1818

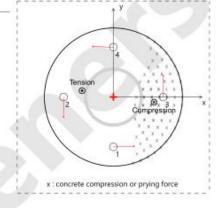
2. Anchor internal forces [kN]

Tension load of anchors is calculated with elastic base plate.

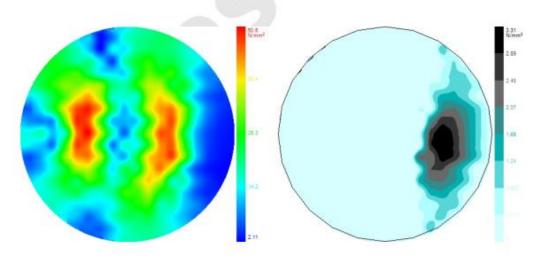
Assumed: Anchor stiffness factor 0.50 → Anchor spring constant C_g = 70.8 kN/mm.

Assumed: coefficient for concrete bedding factor b = 15.0 → concrete bedding factor Cc = b · fc = 480.0 N/mm³

Tension N _i	Shear Vi	Shear x	Shear y
1.026	0.327	0.327	0.012
5.328	0.315	0.000	-0.315
0.000	0.339	0.000	0.339
2.116	0.327	-0.327	0.012
	1.026 5.328 0.000	1.026 0.327 5.328 0.315 0.000 0.339	1.026 0.327 0.327 5.328 0.315 0.000 0.000 0.339 0.000


Maximum plate displacement into concrete (x/y=48.9/-10.4): 0.007 [mm]

Maximum concrete compressive stress: 3.31 [N/mm²] Mean concrete compressive stress: 1.23 [N/mm²] Resultant tension force in (x/y=-40.9/8.4): 8.470 [kN]


Resultant compression force in (x/y=53.1/-6.7): 9.078 [kN] Remark: The edge distance is not to scale.

Displacement and rotation of profile on base plate "
Displacement δ_ε (+ve out of concrete): 0.031782 [mm]

Rotation θ_{s} : 0.000190 [rad] Rotation θ_{s} : 0.001089 [rad]

Bending stresses in the base plate Concrete compression stresses under the base plate

Allfasteners Pty Ltd, 78-84 Logistics Street, Keilor Park, VIC 3042, Australia, Phone 1800 255349, www.allfasteners.com.au

Email: info@primeengineers.com.au

Web: www.primeengineers.com.au

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

[&]quot; Calculated using the best fit plane

AFOS 2.0.3 (12012022) - Extended report

Company: Prime Consulting Engineers Pty. Ltd.

Designer: KZ Address:

Project:

21/1-7 Jordan St, Gladesville 3.5m SQ Cantilever Umbrella Comments:

E-mail:

info@primeengineers.com.au

Phone: 02 8964 1818

Fax:

1/21/2022 Date: Page:

3. Verification at ultimate limit state based on AS 5216

3.1 Tension load

	Related anchor	Action [kN]	Resistance [kN]	Utilization [%]	Status
Steel failure	2	5.328	30.667	17.4	√
Pull-out	2	5.328	13.440	39.6	√
Concrete cone failure	1,2,4	8.470	36.625	23.1	√
Concrete cone failure e *)		-			not applicable
Splitting failure	-	-	-	-	not applicable

¹⁾ additional proof for the fastening with elastic base plate

Steel failure

 $\beta_{N,s} = \, N^{\star} \, / \, N_{Rd,s}$ $N_{Rd,s} = N_{Rk,s} \cdot \varphi_{s,N}$

$N_{Rk,s}$	$\phi_{s,N}$	$N_{Rd,s}$	N*	$\beta_{N,s}$
[kN]		[kN]	[kN]	
46.0	0.667	30.667	5.328	0.174

Pull-out

N ⁰ Rkp	ψς	$\phi_{p,N}$	$N_{Rd,p}$	N*	$\beta_{N,p}$
[kN]			[kN]	[kN]	
16.0	1.26	0.667	13 440	5.328	0.396

Concrete cone failure

N _{Rk,c} =N ⁰ _{Rk,c}	· ψ _{A,N} · ψ _{s,1}	ı · ψ _{re,N} · ψ _e	_{к,N} - Фм,N	N ⁰ _{Rk,c} =	k ₁ · (f' _c) ^{0.5} ·	hef [N]	$\psi_{A,N} = A_c$	N/A° CN	$N_{Rd,c} = N_{Rk,c}$
N ⁰ Rk,c	$A_{c,N}$	A^0_{cN}	ψ_{AN}	k_1	$\varphi_{\varsigma,N}$	her	S _{cr,N}	C _{cr,N}	
FLA.ET	r 21	r 21				f	F	f 3	

N _{Rk.c} [kN]	A _{cN} [mm²]		ΨΑΝ	K ₁	ΦςΝ	n _{ef} [mm]	s _{cr,N} [mm]	C _{cr,N} [mm]	
31.167	104400	57600	1.813	7.7	0.667	80.0	240.0	120.0	-

$\psi_{s,N}$	$\psi_{\text{re},N}$	e _{N.x} [mm]	e _{N,y} [mm]	ψес,N,x	Ф ес.N.у		ψ_{MN}	N _{Rk.c} [kN]	N _{Rd,c} [kN]	N* [kN]	$\beta_{N,c}$
1.0	1.0	19.2	8.4	0.862	0.935	0.806	1.207	54.937	36.625	8.470	0.231

Concrete cone failure for single anchor (additional proof for the fastening with elastic base plate) Verification is not required.

Splitting

Verification of splitting failure is not necessary, because:

3.2 Shear

	Related anchor	Action [kN]	Resistance [kN]	Utilization [%]	Status
Steel failure (without I. arm)	3	0.339	38.400	0.9	√
Pry-out	3	0.339	21.509	1.6	√
Concrete edge failure					not applicable

Steel failure without lever arm

$V_{Rd,s} = V_i $	$Rk_s \cdot k_7 \cdot \varphi_{s,V}$	$\beta_{V,s} = V$	/* / V _{Rd,s}		
$V_{Rk,s}$	k ₇	$\varphi_{s,V}$	$V_{\text{Rd,s}}$	V*	$\beta_{V,s}$
[kN]			[kN]	[kN]	
48.0	1.0	0.8	38.400	0.339	0.009

Allfasteners Pty Ltd, 78-84 Logistics Street, Keilor Park, VIC 3042, Australia, Phone 1800 255349, www.allfasteners.com.au

Address: 21/1-7 Jordan St, Gladesville NSW 2111

Phone: (02) 8964 1818

Email: info@primeengineers.com.au Web: www.primeengineers.com.au

59 | Page

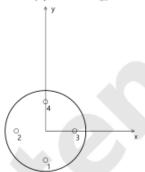
[•] The smallest edge distance of anchor is $c \ge 1.2 c_{cr,sp}$.

ALL**FASTENERS**

AFOS 2.0.3 (12012022) - Extended report

Company: Prime Consulting Engineers Pty. Ltd. E-mail: info@primeengineers.com.au

02 8964 1818 Designer: KZ Phone:


Address: 21/1-7 Jordan St, Gladesville Fax:

3.5m SQ Cantilever Umbrella 1/21/2022 Project: Date: Comments: Page: 4/7

Pry-out failure

N _{Rk,c} =N ⁰ _{Rk,c}	· ψ _{A,N} · ψ _{s,1}	N·Ψ _{re,N} ·Ψ _e	c,V,cp N ⁰	$k_{k,c} = k_1 \cdot (f_c)$	0.5 · h _{ef} 1.5 [N	V) Ψ _{A,N}	$=A_{c,N}/A_{c,N}^0$	$V_{Rk,cp} = I$	t ₈ · N _{Rk,c}	$V_{Rd,cp} = V_{Ri}$	_{k,cp} · φ _{cp,V}
N ⁰ _{Rk,c} [kN]	A _{c,N} [mm ²]	A ⁰ c,N [mm²]	ΨΑΝ	$\psi_{s,N}$	$\psi_{\text{re},N}$	h _{ef} [mm]	s _{cr,N} [mm]	c _{cr,N} [mm]	k ₁	k ₈	$\varphi_{cp,V}$
31.167	29813	57600	0.518	1.0	1.0	80.0	240.0	120.0	7.7	2.0	0.667
e _{V,cp,x} [mm]	e _{V,cp,y} [mm]	$\psi_{ec,V,cp,x}$	$\psi_{ec,V,cp,y}$	$\psi_{ec,V,cp}$	N _{Rk,c} [kN]	V _{Rk,cp} [kN]	V _{Rd,cp} [kN]	V* [kN]	$\beta_{V,cp}$		
0.0	0.0	1.0	1.0	1.0	16.132	32.264	21.509	0.339	0.016		

Related area for calculation of pry-out failure $A_{c,N}$:

Concrete edge failure

Verification for concrete edge failure is not necessary, because there is no concrete edge.

3.3 Combined tension and shear

	Anchor		r	Tension(β _N)	Shear(β_V)	Condition	Utilization [%]	Status	
Steel		2		0.174	0.008	$\beta^{2}_{N} + \beta^{2}_{V} \le 1.0$	3.0	√	
Concrete		2		0.396	0.015	$\beta^{1.5}_{N} + \beta^{1.5}_{V} \le 1.0$	25.1	√	

Anchor-related utilization

A-No.	β _{N,s}	β _{N,o}	$\beta_{N,c}$	$\beta_{N,ec}$	β_{N,s_D}	β _{v,s}	$\beta_{\text{V,cp}}$	$\beta_{V,c}$	β _{N,c,max,E}	$\beta_{\text{V,c,max,E}}$	$\beta_{combi,c,E}$	$\beta_{\text{combi,s,E}}$
1	0.033	0.076	0.231	0.000	0.000	0.009	0.015	0.000	0.231	0.015	0.113	0.001
2	0.174	0.396	0.231	0.000	0.000	0.008	0.015	0.000	0.396	0.015	0.251	0.030
3	0.000	0.000	0.000	0.000	0.000	0.009	0.016	0.000	0.000	0.016	0.002	0.000
4	0.069	0.157	0.231	0.000	0.000	0.009	0.015	0.000	0.231	0.015	0.113	0.005

BNC/NEXE: Highest utilization of individual anchors under tension loading except steel failure

 $\beta_{V,c,ma,E} \colon Highest \ utilization \ of \ individual \ anchors \ under \ shear \ loading \ except \ steel \ failure$

 $\beta_{combined} : Utilization of individual anchors under combined tension and shear loading except steel failure$

Beambis, E: Utilization of individual anchors under combined tension and shear loading at steel failure

Allfasteners Pty Ltd, 78-84 Logistics Street, Keilor Park, VIC 3042, Australia, Phone 1800 255349, www.allfasteners.com.au

60 | Page Address: 21/1-7 Jordan St, Gladesville NSW 2111

Email: info@primeengineers.com.au Phone: (02) 8964 1818 Web: www.primeengineers.com.au

ALL**FASTENERS**

AFOS 2.0.3 (12012022) - Extended report

Company: Prime Consulting Engineers Pty. Ltd.

Designer: KZ

Comments:

Address: 21/1-7 Jordan St, Gladesville Project: 3.5m SQ Cantilever Umbrella E-mail: Phone: Fax:

info@primeengineers.com.au 02 8964 1818

ione. Uz 0904 101

Date: 1/21/2022 Page: 5 / 7

4. Displacement

Tension loading: $N_k^h = N^{*h} / 1.4$ Short-term displacement: $\delta_N^0 = (N_k^h / N_0) \cdot \delta_{N0}$ Long-term displacement: $\delta_N^{\infty} = (N_k^h / N_0) \cdot \delta_{N\infty}$

Shear loading: Short-term displacement: Long-term displacement: $V_k^h = V_k^h / 1.4$ $\delta_V^0 = (V_k^h / V_0) \cdot \delta_{V0}$ $\delta_V^\infty = (V_k^h / V_0) \cdot \delta_{V\infty}$

 N^{*h} N_0 δ_{N0} $\delta_{N\infty}$ [kN] [kN] [mm] [mm] 5.328 7.6 0.5 1.3

δ_N δ_N [mm] [mm] **0.250 0.651**

V*^h V₀ δ_{v0} [kN] [kN] [mm] 0.339 27.5 3.6 δ_{√∞} δ_√⁰
[mm] [mm]

δ_v[∞] [mm]

5. Remarks

 Capacity verifications of Section 3 are in accordance with AS 5216. For more complex cases which are outside of AS 5216, the same principles of AS 5216 are still used.

- For connections with a flexurally rigid base plate, it is assumed that the base plate is sufficiently rigid. However, the current anchor
 design methods (ETAG, Eurocode, AS 5216, ACI 318, CSA A23.3) do not provide any usable guidance to check for rigidity. In the
 realistically elastic (flexible) base plate, the tension load distribution between anchors may be different to that in the assumed rigid
 base plate. The plate prying effects could further increase anchor tension loading. To verify the sufficient base plate bending
 rigidity, the stiffness condition according to the publication "Required Thickness of Flexurally Rigid Base plate for Anchor
 Fastenings" (fib Symposium 2017 Maastricht) is used in this software.
- For connections with an elastic base plate, the anchor tension forces are calculated with the finite element method with
 consideration of deformations of base plate, anchors and concrete. Background for design with elastic base plates is described in
 the paper "Design of Anchor Fastenings with Elastic Base Plates Subjected to Tension and Bending". This paper was published in
 "Stahlbau 88 (2019), Heft 8" and "5. Jahrestagung des Deutschen Ausschusses für Stahlbeton DAfStb 2017".
 Anchor shear forces are calculated with the assumption of a rigid base plate. Attention should be paid to a narrow base plate with
 a width to length ratio of less than 1/3.
- Verification for the ultimate limit state and the calculated displacement under service working load are valid only if the anchors are installed properly according to ETA.
- For design in cracked concrete, anchor design standards/codes assume that the crack width is limited to ≤ 0.3mm by
 reinforcement. Splitting failure in cracked concrete is prevented by this reinforcing. The user needs to verify that this reinforcing is
 present in cracked concrete. Generally, concrete structures design standards/codes (e.g. AS 3600) meet this crack width
 requirement for most structures. Particular caution must be taken at close edge distances where the location of reinforcing is not
 clearly known.
- Verification of strength of concrete elements to loads applied by fasteners is to be done in accordance with AS 5216.
- All information in this report is for use of Allfasteners products only. It is the responsibility of the user to ensure that the latest
 version of the software is used, and in accordance with AFOS licensing agreement. This software serves only as an aid to interpret
 the standards and approvals without any guarantee to the absence of errors. The results of the software should be checked by a
 suitably qualified person for correctness and relevance of the results for the application.

The load-bearing capacity of the anchorage is: verified!

Allfasteners Pty Ltd, 78-84 Logistics Street, Keilor Park, VIC 3042, Australia, Phone 1800 255349, www.allfasteners.com.au

Address: 21/1-7 Jordan St, Gladesville NSW 2111 Phone: (02) 8964 1818

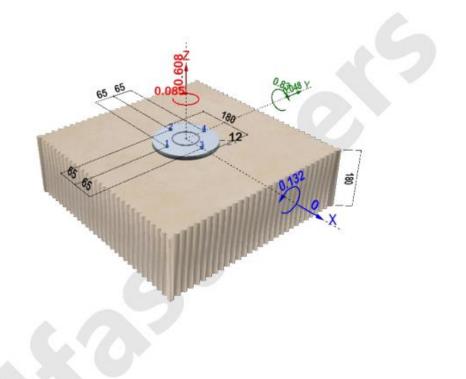
ALLFASTENERS

AFOS 2.0.3 (12012022) - Extended report

Company: Prime Consulting Engineers Pty. Ltd.

Designer: KZ

Comments:


Address: 21/1-7 Jordan St, Gladesville 3.5m SQ Cantilever Umbrella Project:

info@primeengineers.com.au E-mail: 02 8964 1818 Phone:

Fax:

1/21/2022 Date: Page: 6/7

Anchorage figure in 3D:

Allfasteners Pty Ltd, 78-84 Logistics Street, Keilor Park, VIC 3042, Australia, Phone 1800 255349, www.allfasteners.com.au

Email: info@primeengineers.com.au Web: www.primeengineers.com.au **Phone:** (02) 8964 1818

ALLFASTENERS A

AFOS 2.0.3 (12012022) - Extended report

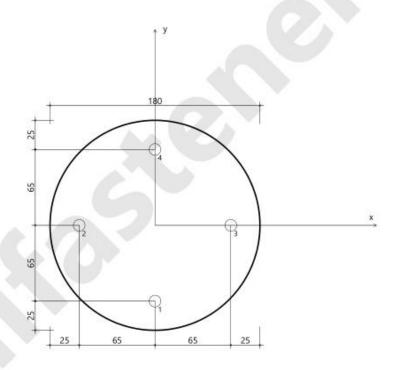
Company: Prime Consulting Engineers Pty. Ltd.

Designer: KZ

Address: 21/1-7 Jordan St, Gladesville Project: 3.5m SQ Cantilever Umbrella Comments: E-mail: info@primeengineers.com.au Phone: 02 8964 1818

Fax:

Date: 1/21/2022 Page: 7 / 7


Anchor: HLA-Z1 M10

Drilled hole: $d_0 \times h_0 = 15 \times 104 \text{ mm}$

Base plate: G250

Thickness: t = 12 mmClearance hole: $d_f = 17 \text{ mm}$

Allfasteners Pty Ltd, 78-84 Logistics Street, Keilor Park, VIC 3042, Australia, Phone 1800 255349, www.allfasteners.com.au

Phone: (02) 8964 1818